
www.manaraa.com

I

Applying Object Oriented Design Methodology
for

e-Government Web Based Applications

BY

Nasser N AL-Azmi
(20051220176)

Supervisor

Prof. Dr. Naim Ajlouni

This Thesis is submitted to the Department of Computer
Science, Graduate College of Computing Studies, Amman Arab

University for Graduate Studies in partial fulfilment for the
requirement of the degree of Master of Science in Computer

Science.

Department of Computer Science

Graduate College of Computing Studies
Amman Arab University for Graduate Studies

 (March – 2008)

www.manaraa.com

II

www.manaraa.com

III

www.manaraa.com

IV

Applying Object Oriented Design Methodology for e-Government
Web

 Based Applications

Prepared By:
Nasser Al-Azmi

Supervisor:

Prof. Naim M. Ajlouni

ABSTRACT

Despite the sensitive nature of e-government applications, their

design and development lack an integrated methodology that

participates in delivering high quality and secured applications. Thus,

in this thesis, a new integrated use case driven object oriented

methodology for the design and development of e-government

application is proposed. The application of the proposed methodology

has led to two main findings. First, use case specifications fit the

external functionalities of e-government applications. The second is

that the use case architectural view can successfully lead the

development of the design and architectural views of e-government

applications, and consequently drive their corresponding software

development phases. In addition, it has been found that use case

models construct the basis from which a simple and usable graphical

www.manaraa.com

V

user interface could be developed. This has led to the construction of

a usable user friendly Graphical User Interface (GUI) for the

anticipated system. Furthermore, the consideration of non-functional

requirements in use case models supported the adoption and

realization of e-government applications characteristics of excellence

in the proposed methodology, and hence, resulting system. These

findings showed that the proposed approach supersedes current

approaches in that it participated in delivering integrated e-

government applications as demonstrated in the Email Access case

study. Finally, further work is being carried out to investigate the

validity of the proposed methodology by its application on other type(s)

of e-government application(s). Also, generalization of the proposed

methodology to fit the design and development of other e-commerce

applications is planned to be considered in future phases of this

research.

www.manaraa.com

VI

Acknowledgement

First of all, I’d like to thank my Supervisor Prof. Dr. Naim Ajlouni for

his time, support, and guidance during the lifecycle of this research.

Without his ideas, suggestions, and directions it would not have been

possible to complete this work.

Finally, I would like to thank all the academic and administration staff

members of Amman Arab University for Graduate Studies for their

help and support.

www.manaraa.com

VII

Table of Contents

ABSTRACT .. IV

ACKNOWLEDGEMENT ... VI

TABLE OF CONTENTS ... VII

LIST OF FIGURES .. IX

LIST OF ABBREVIATIONS .. XI

CHAPTER ONE: INTRODUCTION .. 1

1.1. RESEARCH PROBLEM: DESIGN OF E-GOVERNMENT APPLICATIONS 1
1.2. RESEARCH HYPOTHESIS ... 6
1.3. RESEARCH APPROACH AND OBJECTIVES .. 7
4.1STRUCTURE OF THESIS REPORT.. 9

CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW .. 11

1.2. INTRODUCTION ... 11
2.2.E-GOVERNMENT EVOLUTION IN DIFFERENT COUNTRIES 11
2.2.1. SINGAPORE .. 12
2.2.2. GULF COUNTRIES .. 13
2.2.3. INDIA .. 15
2.2.4. CZECH REPUBLIC .. 16
2.3. DESIGN OF E-GOVERNMENT APPLICATIONS 17
2.4. SOFTWARE DEVELOPMENT LIFE CYCLE MODELS 21
2.4.1.WATERFALL MODEL ... 22
2.4.2.SPIRAL MODEL .. 26
2.4.3.EXTREME PROGRAMMING ... 32
2.4.4.RATIONAL UNIFIED PROCESS .. 38
2.5. THE ADOPTED SOFTWARE DEVELOPMENT LIFE CYCLE................... 41
2.6. RESEARCH METHODOLOGY ... 48
2.7. SUMMARY AND CONCLUSION ... 53

CHAPTER THREE: THE PROPOSED METHODOLOGY 55

3.1. INTRODUCTION ... 55
3.2.THE REQUIREMENTS ENGINEERING PHASE 55
3.2.1. REQUIREMENTS ELICITATION .. 57
3.2.2. REQUIREMENTS ANALYSIS ... 58
3.2.3. REQUIREMENTS VALIDATION ... 58

www.manaraa.com

VIII

3.2.4. REQUIREMENTS CHANGE MANAGEMENT 59
3.3. THE DESIGN PHASE .. 60
3.4. THE IMPLEMENTATION PHASE .. 63
3.5. THE TESTING PHASE .. 65
3.6. SUMMARY AND CONCLUSION ... 67

CHAPTER FOUR: CASE STUDY-EMAIL ACCESS SYSTEM 69

4.1. INTRODUCTION ... 69
4.2. ITERATION ONE .. 69
4.2.1. BUSINESS REQUIREMENTS ... 71
4.3. ITERATION TWO ... 76
4.3.1. REQUIREMENTS ANALYSIS ... 76
4.3.2. SYSTEM-LEVEL NON-FUNCTIONAL REQUIREMENTS 82
4.3.3. SYSTEM DESIGN ... 85
4.3.4. REQUIREMENTS AND DESIGN VALIDATION 89
4.4. ITERATION THREE ... 90
4.4.1. BLACK BOX TESTING ... 91
4.4.2. WHITE BOX TESTING ... 93
4.5. RISK MANAGEMENT .. 96
4.5.1.TIME LIMITS ... 97
4.5.2.REQUIREMENTS CHANGE .. 98
4.6. CRITICAL EVALUATION .. 99
4.6.1. RESEARCH PHASES AND SOFTWARE DEVELOPMENT PROCESS 99
4.6.2. THE DEVELOPED E-GOVERNMENT APPLICATION: EMAIL ACCESS 105
4.6.3. RESEARCH QUESTIONS AND OBJECTIVES 106
4.7. SUMMARY AND CONCLUSION ... 113

CHAPTER FIVE: CONCLUSION AND FUTURE WORK 115

5.1. SUMMARY AND CONCLUSION ... 115
5.2. FUTURE WORK .. 118

REFERENCES ... 120

APPENDICES .. 127

ARABIC SUMMARY ... 179

www.manaraa.com

IX

List of Figures

FIGURE 2.1: THE WATERFALL MODEL [41]. ... 24
FIGURE 2.2: THE SPIRAL MODEL [17]. .. 29
FIGURE 2.3: EXTREME PROGRAMMING DEVELOPMENT CYCLE [32]. 34
FIGURE 2.4: AN ITERATIVE MODEL GRAPH THAT SHOWS HOW RUP IS

STRUCTURED [35].. 40
FIGURE 3.1: SOFTWARE SYSTEM'S ARCHITECTURAL VIEWS [31]. 62
FIGURE 3.2: STATIC AND DYNAMIC VERIFICATION AND VALIDATION [47]. . 67
FIGURE 4.1: SYSTEM USE CASE MODEL. .. 74
FIGURE 4.2: SUBSYSTEM OF EMAIL ACCESS SYSTEM. 75
FIGURE 4.3: SYSTEM ARCHITECTURE.. 75
FIGURE 4.4: USE CASE DIAGRAM OF MAINTAIN EMPLOYEE INFO USE

CASE. ... 78
FIGURE 4.5 USE CASE DIAGRAM OF MAINTAIN SUGGESTIONS USE

CASE. ... 78
FIGURE 4.6: CLASS MODEL VERSION 0.1. .. 85
FIGURE 4.7: CLASS MODEL VERSION 0.2. ... 86
FIGURE 4.8: CLASS MODEL VERSION 0.3. ... 87
FIGURE 4.9: CLASS MODEL VERSION 1.0. ... 87
FIGURE 4.10: EMAIL ACCESS OPTIONS PAGE. 94
FIGURE 4.11: EMAIL ACCESS SECTOR MAINTENANCE PAGE.................. 95
FIGURE 4.12: EMAIL ACCESS ASSIGN EMPLOYEES TO SECTION PAGE . .. 95
FIGURE 4.13: EMAIL ACCESS USER INBOX PAGE. 96

www.manaraa.com

X

List of Tables

TABLE 1.1: SUMMARY OF E-GOVERNMENT DESIGN APPROACHES. 9
TABLE 2.1: COMPARISON OF E-GOVERNMENT DESIGN APPROACHES. 21
TABLE 4.1: SYSTEM FUNCTIONALITIES. ... 72
TABLE 4.2: E-GOVERNMENT APPROACHES COMPARISON 106

www.manaraa.com

XI

List of Abbreviations

Abbreviation Full Term

24 x7 ISSS 24 x 7 Info-Security Surveillance Services

DSTA Defence Science and Technology Agency

EC European Commission

G2B Government to Business

G2C Government to Citizens

G2G Government to Government

GUI Graphical User Interface

ICT Information and Communication Technology

MoSCoW
“Must have”, “Should have”, “Could have”

and “Won’t have”

NFR Non-Functional Requirements

OO Object-Oriented

RAfEG Reference Architecture for E-Government

RE Requirements Engineering

RUP Rational Unified Process

SDLC Software Development Life Cycle

SE Software Engineering

SR Security Requirements

SW SoftWare

TDD Test Driven Development

UC Use Case

www.manaraa.com

XII

 UML Unified Modelling Language

V & V Validation and Verification

WfMS Workflow Management System

XP eXtreme Programming

www.manaraa.com

1

Chapter One: Introduction

1.1. Research Problem: Design of e-Government Applications

Electronic Government (e-government) is the application of the

Internet and related technologies to provide more convenient and

effective government services to individual citizens and businesses.

The goal is to provide government services across a different channel.

e-Government applications are classified as: Government to Citizens

(G2C), Government to Business (G2B), or Government to

Government (G2G). Examples of these applications include: Public e-

Services deployment, Public e-Procurement Services, E-government

Portal design and functionality, and E-Government Document

Management Systems.

The e-government application software has to satisfy two key

stakeholders, namely, the government agencies and the citizens. E-

Government applications can benefit or adversely affect the large

population of users depending on the overall usability of system

design and the user interface design. Furthermore, there exists a

social-technical gap between users and technology, which needs to

be bridged. Hence, design of e-government applications involves the

www.manaraa.com

2

 study of application context, mental models, socio-cultural

preferences, cognitive and ergonomic requirements of users. Human

factors and system usability are truly the ignored imperatives in most

e-government projects. As per the World Bank report, approximately

35% of e-governance projects in developing countries are total

failures; approximately 50% are partial failures and only 15% can be

seen as fully successful. As per NASSCOM report, the Government

of India's spending on e-governance has gone up from Rs. 1500

crores in year 2002 to Rs. 2200 crores in 2003-2004. It will be possible

to achieve greater returns on these enormous investments if usability-

engineering approaches are practiced.

The literature [18,45,50] defined twelve characteristics of excellence

for e-government applications:

1. Comprehensive: To the greatest extent possible, citizens should

be able to do everything they have to do or want to do with their

government through one e-government portal.

2. Integrated: All e-government applications should be integrated

with each other, so citizens can avoid the need to provide the

same data over and over and governments can save time and

money by not needing to re-enter data.

www.manaraa.com

3

3. Ubiquitous: Access to a jurisdiction's e-government portal and

its connected sites and applications should be available to

users/citizens from any Internet-capable connection, including

PCs, PDAs, smart phones and other Internet appliances.

4. Transparent/Easy to Use: e-government sites should be

designed and operated so that even novices of computer users

can readily find the information they need, provide the

information requested by the government agencies with which

they are dealing, and otherwise perform all e-government

transactions.

5. Accessible: The design and operation of e-government systems

should, from the ground up, take into account the special needs

of the disabled, and make it possible for them to use these

systems as easily as the non-disabled.

6. Secure: e-government systems need to protect the

confidentiality of data provided by citizens, the records created

and stored by government, and the content and existence of

citizen-government transactions performed over the Internet.

Smart cards, with or without biometrics, along with digital

certificates, can provide this necessary security.

www.manaraa.com

4

7. Private: Data about citizen-government transactions, and the

content of those transactions, need to be fiercely protected by

the government. Under no circumstances should governments

unilaterally give, sell, or trade electronic information about their

citizens to private entities eager to advertise to them, nor should

the government itself be allowed to use this data in any way not

allowed by law and explicitly approved by the citizens.

8. Re-engineered: It is not enough to replicate electronically the

administrative processes and procedures currently in place. It is

necessary to thoroughly re-evaluate the overall mission of the

jurisdiction and then design a digital structure that creates a

government-citizen interface that simplifies and streamlines

each transaction individually and the entire process of

government administration generally.

9. Continuously evolving: Based on citizen use patterns and

explicitly expressed preferences (in online surveys and online

focus groups, as well as in individual e-mails), e-government

services need to be continuously upgraded, updated, and

www.manaraa.com

5

10. modified to suit the citizens' needs, the structure and

agenda of the government, and the latest technology in data

processing and network design, construction, operation, and

access.

11. Fun to use: All else being equal, e-government

portals/networks should be entertaining, aesthetically satisfying,

and fun to use.

12. Interoperable: An excellent e-government site is one that

provides appropriate (and up-to-date) links to other e-

government sites, at its own and other levels in the government

hierarchy. All e-government sites need to work together

seamlessly.

13. Be linked to Internet voting, Smart Initiatives, and

Constituent Polling Systems.

Obstacles to excellence in e-government applications are classified

into technical and non-technical. Thus, this thesis is concerned with

addressing technical obstacles that are related to designing and

implementing e-government applications. This is achieved through the

www.manaraa.com

6

 utilization and application of object oriented design methodology

enabling an integrated e-government solution. This integrated solution

possesses the characteristics of excellence as detailed above.

1.2. Research Hypothesis

This research attempts to investigate the reality of the following

hypothesis:

“The use of a software engineering methodology based on Use Case

(UC) modelling is appropriate for designing and developing an object

oriented web base e-government applications”. The dimensions of

Use Case (UC) modelling appropriateness include:

1. Can UC specifications fit the functionalities of e-government

applications?

2. Can the UC model of the required e-government application

drive the development of a functioning system throughout all

the Software Development Life Cycle (SDLC)?

3. To what extent will the adoption of the above twelve

characteristics of excellence result in a successful design and

development of e-government applications?

www.manaraa.com

7

1.3. Research Approach and Objectives

UC design and development approach is the most recent object

oriented development approach. Recent applications of UC driven

development showed its effectiveness and appropriateness for both

desktop and web based applications. Among the reasons nominated

UC driven development for the analysis, design, and implementation

of e-government applications in this research are:

 UC models are central in organising and modelling the

behaviour of the software system and subsystems. Each model

shows the interaction between the system/subsystem and its

environment as a set of UCs (to represent the

behaviour/functionality), actors (to represent the context), and

the relationships among them (their interaction) [14,19].

 UCs are important to visualise, specify, and document the

behaviour of the software system. They make the proposed

system, its subsystems, and classes, approachable and

understandable by presenting an outside view of how those

elements may be used in the context [19,54].

 UCs enable addressing the software architecture in the early

stages of software development [14].

www.manaraa.com

8

 UCs can be utilized in developing Graphical User Interface

(GUI)-based applications in general and e-government

applications, in particular.

 UCs and the other Unified Modelling Language (UML) [19]

diagrams can effectively be integrated with any collection of

web based technologies (such as C# and java script

programming languages) to propose a new design and

implementation methodology for Object-Oriented (OO) e-

government applications.

This UC driven approach can be seen as an important new e-

government applications design and development approach for the

following reasons:

1. In the literature, there doesn’t seem to be an integrated e-

government application development approach in general,

and UC based, in particular. Rather, table 1.1 summarises

current e-government applications design approaches in a

way showing their main theme compared to out integrated

approach.

www.manaraa.com

9

Table 0.1: Summary of e-Government Design Approaches.

Design
Approach

Theme

Beer et al. Flexible e-government
applications

Marchese Service oriented e-government

Kalloniatis et al. e-government security

Tian and
Tianfield

Possibility of e-government
digitalization.

2. Approximately, most of the available e-government

applications use no or a traditional software development

methodology, while the proposed system aims at adopting a

recent OO methodology.

1.4. Structure of Thesis Report

This thesis is composed of five chapters that gradually demonstrate

the adopted research approach and its application to the reader.

After the brief overview of the research context and motivations

presented in this chapter, the adopted methodology in conducting this

research is presented in chapter two. A survey on the work done by

the researchers to design, develop, and evaluate e-government

applications is presented also in chapter two. In addition, chapter two

presents a survey on the different SDLCs followed to develop software

www.manaraa.com

10

systems. Finally, chapter two contrasts the features of the different

SDLCs to select the most suitable one for the newly proposed

development methodology of e-government applications.

Chapter three presents the adopted SDLC phases, Requirements

Engineering (RE), design, implementation and testing, as part of the

newly proposed methodology. The application of the proposed

methodology on a selected case study is demonstrated in chapter

four.

Chapter four concludes with an evaluation to the appropriateness of

the proposed methodology in developing e-government applications.

It also evaluates the outcomes of each of its phases. In addition, this

chapter discusses (1) the extent to which the aims of this research

have been met, and (2) whether the research problem has been

solved.

Finally, chapter five presents a summary of the proposed

development methodology, the conclusions derived from this

research, and concludes with some suggestions for related future

research work.

www.manaraa.com

11

Chapter TWO:

Background and Literature review

1.2. Introduction

In this chapter, the evolution of e-government in a number of countries

is summarised in section 2.2. Section 2.3 summarises the main

research efforts in e-government applications design and

development. In section 2.4, the well known and widely used software

development life cycles and their defined stages have been

summarised. The applications of each development model, their

advantages and disadvantages have also been provided. The

adopted software development life cycle to develop the anticipated e-

government applications design and development methodology and

the motivations and reasons behind this adoption are specified in

section 2.5. Finally, a summary and the main conclusions of this

chapter are provided in section 2.7.

2.2.E-Government Evolution in Different Countries

This section discusses the experience of e-government applications

in a number of countries such as: Singapore, gulf countries, India, and

Czech Republic, respectively.

www.manaraa.com

12

2.2.1. Singapore

There have been many areas that the government has used

technology in Singapore. These include:

 Health Care and Public Services. Solutions for this purpose

have been done by Ramco [44]. The government has many

Community Centers, and Clubs spread across the length and

breadth of Singapore. The need was to combine all this under

one application so that administration and management

become easy to handle.

 Defence Science and Technology Agency (DSTA).

According to Business Line [28,49] the government has taken

e-governance to its DSTA. Lots of government agencies and

users use the GeBiz, to submit online bids and to do

transactions between the various entities in the government.

 Information and Communication Technology (ICT).

According to [28], the ICT looks at enhancing e-governance

initiative in Singapore. eCitizen is a portal formed as a forum

for eTown Mayors. Some of the services offered by them are

as follows,

www.manaraa.com

13

o E-services for individuals and businesses.

o Connecting Singaporeans living in Singapore or

abroad.

o Connecting different government agencies.

o Programs have been put into place to help the public

interact and understand the e-governance

advantages.

 E-Services@ONE.MOTORING. Transport related system for

submitting vehicle registrations and transferring of

applications for customers.

 24 x 7 Info-Security Surveillance Services (24 x7 ISSS).

Helps in maintaining the security and protecting networks all

over Singapore 24 x 7.

2.2.2. Gulf Countries

E-government has already begun to spread in the Gulf countries

[1,2]. This section highlights some of the work that is being

undertaken in some of the Gulf countries such as:

 Kuwait. According to [6], a UN report calls on improved IT

literacy among its citizens so that e-government can be used

to its best of its capability.

www.manaraa.com

14

 United Arab Emirates. Work is in process to connect the

different departments of the governments [7], and they are

looking to increase the number of people using internet

connection. Dubai Government [3] is developing its IT

applications. The main area that will be looked into is the

electronic payment scheme which allows the users to carry

out online transactions through the banks. Another area is the

judicial departments [3], where in e-governance can be used

across the judiciary departments. The main aim is

accelerating process involved in the department and improve

the performance of staff. On the other hand, Abu Dhabi

government has launched online government services [7].

The e-portal that is available connects more than 500

government services which also contain sections for

business exchanges and development.

 Qatar: Microsoft is helping Qatar in developing its Information

Technology [12]. This proposal aims at allowing the country

to expand into different areas, not only oil but also all major

www.manaraa.com

15

 areas of the country, some being, education, healthcare,

technology for the study of research and development in

these areas.

2.2.3. India

India has very vast population and the governance is doing its best

to put forth the best and beneficial policies while entering the 21st

century. Karnataka one of the many states of India, which boasts of

the IT capital city Bangalore, has in the past few years effectively

implemented e-governance strategy [23]. The following are some of

the projects that are a part of the e-governance project:

 Mukya Vahini. It is a Decision Support System that the Chief

Minister uses to oversee all public grievances. It also keeps

up-to-date information on the on going proposals, project

progress, ministerial decisions, budgetary changes from

within the state as well as in relation to the central

government.

www.manaraa.com

16

 Khajane. Keeps up-to-date information of the state treasury,

it tracks all checks related queries. The system handles

money spent on departments, employees, pensioners,

physically handicapped people, widows, to name a few.

 Saarige. This system keeps track of transport related issues.

For instance, vehicle registrations, issue of driving licenses,

permits, and tax collection.

The websites are good but have too much of irrelevant contents; there

is no up-to-date information, no online support or sitemap to help the

user. The websites do not cover all the functionalities of the

departments and most of the departments are still not interconnected

properly, so there is repeated information across pages.

2.2.4. Czech Republic

This section discusses the e-governance implementation in Czech

Republic and Slovakia [33]. The system has spread over different

areas, some of them being the Ministry of Finance, Ministry of

Interiors, and Ministry of Informatics. Some of their portals have been

discussed as follows:

www.manaraa.com

17

 Public Administration Portal. The system offers information

about Land Registry along with Czech and European

Commission (EC) legal regulations. This portal is intended to

give information on Legislation, contact details of public

administrative authorities and help in transactional online

 services. Although the motive behind the website was good,

it still is very limited. The navigation menu is too complicated,

structure of the web pages is confusing, and there is a lot of

irrelevant information. The other issue being that there are no

links to the other parts of the e-governance system.

 Ministry of Finance. The system is used for online filing of tax

returns. Different kinds of taxes such as VAT, excise duties,

income taxes are all available for online processing. The only

low point is that electronic signatures still have not been

implemented properly. They have only limited application

forms being filled, due to its high cost. Therefore, the issue

of authorization is still not appropriate. The system is still not

are used effectively. Some of the reasons being incompatible

laws and misused tax laws.

2.3. Design of e-Government Applications

The raising need for e-government applications leads to many new

www.manaraa.com

18

approaches in this sector. To fulfill the requirement for a flexible

government-to-government (G2G) software system being adaptable

for the usage in many sectors of e-government applications, Beer et

al. introduced the reference architecture for e-government (RAfEG).

The key features of the system are flexibility, security, adaptability and

interoperability between authorities. Because security is a critical

issue in e-government applications their solution used different types

of authentication and authorization methods in addition to supporting

secure communication between the interoperating heterogeneous

systems. Due to the fact that the electronically supported execution of

government procedures is the main aspect of the RAfEG system, an

approach where these procedures are modeled as workflows and

executed by an underlying workflow management system (WfMS) is

the solution they presented. Beer et al. claim that RAfEG system is a

new approach because it is able to cope with a wide range of internal

official procedures and it is highly adaptable to new procedures within

e-government.

www.manaraa.com

19

Marchese [38] introduced the idea of service oriented architectures for

supporting environments in e-government applications due to the

major changes in the structure and operation of public administrations

in this type of applications.

Kalloniatis et al., as cited in [11], analyzed the current frameworks of

e-government applications from the perspective of security

requirements engineering due to the increasing need for keeping

information secure in modern e-business, e-commerce, and e-

government environments. This held because personally identifiable

information can be electronically transmitted and disseminated over

insecure open networks and the Internet. Security and privacy

constitute the basic foundations of a trust framework, which composes

a sine qua non condition for Information Societies. Requirements

engineering (RE) is the principled application of proven methods and

tools, which can design this trust framework effectively in all aspects

of modern e-Government applications. Kalloniatis et al. described a

number of well-known RE frameworks developed for eliciting and

managing security requirements (SR). They also presented a

comparative analysis of existing frameworks from a number of

www.manaraa.com

20

complementary viewpoints. Based on the results of this analysis they

identified a number of unresolved issues that need to be addressed

by research in the security requirements field.

Due to the complexity of designing e-government applications, Tian

and Tianfield [51] and Gammeri et al. [25] discussed an object

oriented design for a selected e-government application case study.

They firstly analyzed the functions and services of government and

the possibility of their digitalization. Secondly they analyzed the overall

requirement of e-government systems.

Table 2.1 summarizes the literature of e-government applications

design and development. It shows that each study discussed a

specific feature of this type of applications and none covered an

integrated design and development methodology. Hence, in this

thesis an integrated object oriented methodology for the design and

development of e-government applications is proposed starting from

selecting the overall framework (i.e. SDLC) in the following sections.

www.manaraa.com

21

Table 0.1: Comparison of e-government design approaches.

Design Approach Theme Integrated
Approach?

Beer et al. Flexible e-government
applications

No

Marchese Service oriented e-
government

No

Kalloniatis et al. e-government security No

Tian and Tianfield Possibility of e-government
digitalization.

No

The proposed
approach

Integrated e-government
application

Yes

2.4. Software Development Life Cycle Models

In 1970s, software organisations used to develop lifecycle approaches

for their organisations. Each approach described the actions and

decisions undertaken within the organisation during the different

software lifecycle phases. These approaches have been formalised

as software development life cycle methodologies. A software life

cycle methodology is defined as “a collection of tools, techniques, and

methods which provide roles and guidelines for ordering and

controlling the actions and decisions of project participants during the

software lifecycle” [47]. The different software life cycle methodologies

have different orders of different activities to be conducted during the

software life cycle. However, the activities defined in these

www.manaraa.com

22

 methodologies are not necessarily distinct. They include specifying,

designing, implementing, testing, delivering, putting into operation,

and maintaining the software system.

A software development life cycle model, or process model, provides

an abstract representation of the activities conducted during the

software life cycle and defined by a particular methodology [47]. Many

process models have been identified in the literature in order to

explain the different software development methodologies. The

following subsections summarize the best fit of those SDLCs for the

development of e-government applications.

2.4.1.Waterfall Model

This model is sometimes called “classic life cycle” or “linear sequential

model” [41]. It is the first documented and published model and follows

a documentation driven paradigm [41]. It is derived from other

engineering processes and was developed to cope with the increasing

complexity of aerospace products [41]. The waterfall model

represents the fundamental process activities as separate and

sequential phases, where one phase has to be complete before

www.manaraa.com

23

moving to the following phase. Moreover, feedback from one phase is

provided at the end of this phase, as shown in figure 2.1, and the user

is not actively involved in the development process.

It has five main stages [41]:

1. Requirements analysis and definition, or requirements

engineering phase to be more general. This phase includes

understanding the problem domain and the required software

system. It also includes identifying the services, constraints,

goals, stakeholders, and boundaries of the system. The

output of this phase is the requirements specification.

2. Software design. During this phase, the system’s

architecture, data structures, interface representations, and

procedural details are identified and constructed based on

the requirements specified in the requirements engineering

phase.

3. Implementation and unit testing. This phase involves

realising the software design, constructed during the design

www.manaraa.com

24

4. stage, as program units (procedures, classes, etc). It also

involves verifying that the developed specifications.program

units meet the requirements and design

5. Integration and system testing. The developed program units

are integrated into a complete system. The integrated

components and the system as a whole are tested to

Figure 0.1: The Waterfall Model [41].

ensure that the program units still work correctly after

integration with other units and the system meets its specified

requirements.

www.manaraa.com

25

6. Operation and maintenance. After ensuring correct operation

of the system and complete implementation of the required

services, the system is delivered to the client and installed in

the client’s operational environment. After using the system,

some errors, that were not discovered during the

development and testing, might be uncovered. Thus,

maintenance of the system might be required. System

maintenance involves errors’ correction and system

improvements.

Although the waterfall model is the most widely used model in

software development, it has been criticised by practitioners due to its

disadvantages:

1. It has inflexible partitioning of the software development

project into distinct phases, which makes it very difficult to

accommodate changes or respond to changing customers’

requirements after the development process is underway.

Hence, it might not be appropriate for developing many

business systems as they rarely have stable requirements.

www.manaraa.com

26

2. It is only appropriate when the system’s requirements are

well-understood, which is not always the case in real life.

Customers often find it difficult to explicitly and completely

specify all the requirements at the beginning of the

development process.

3. A working version of the system will not be available until late

in the development process, which requires customers’

patience. In addition, this model does not accommodate

prototyping, and the users are not actively involved during the

development process. Hence, the developed system might

not reflect the customers and users’ real needs, and this might

not be discovered until the system is delivered.

2.4.2.Spiral Model

The spiral model of the software development process was defined by

Boehm [17] in 1988 with the purpose of overcoming the problems

associated with the document-driven and code-driven software

development lifecycles introduced above. It was developed based on

experience with various enhancements of the waterfall model as

www.manaraa.com

27

 applied to large government projects, and has been successfully

used to define and develop large applications such as the TRW

Software Productivity System [17].

The spiral model has been introduced as a model that serves as a

more robust foundation for a software development environment than

the previously developed software development models including the

waterfall, evolutionary, iterative incremental development, and formal

specification models. This has been attributed to the idea that the

spiral model includes these models as special cases depending on

the software situations, and provides further guidance on how to use

some of these models in combination in order to best develop a

software system. The main important feature that distinguishes the

spiral model from other models is that it creates a risk-driven approach

that avoids many of the problems associated with other software

development models and makes it adaptable for a full range of

software projects as will be discussed later.

As shown in figure 2.2, the spiral model does not represent the

development process as a linear sequence of activities with some

backtracking among activities. Instead, it presents the development

www.manaraa.com

28

process activities as a spiral, where each loop (or more) in this spiral

represents a phase (feasibility study, requirements engineering,

design, code, etc) in the development process [17]. In addition, each

loop comprises four main activities:

1. Identification of objectives, alternatives, and constraints.

2. Evaluation of alternatives and risk assessment and reduction.

This activity incorporates evaluating the alternatives with

respect to the defined objectives and constraints. This

evaluation would frequently identify the project’s risks. If some

risks are identified, a cost-effective strategy, which might

incorporate prototyping, simulation, analytical modelling or

any other risk resolution technique, will be identified for

resolving these risks.

3. Development and validation. During this activity, any software

development model, or combination of models, will be

selected to develop the required part of the system during this

phase. Selecting the development model depends on the

identified risks and risk reduction strategies.

www.manaraa.com

29

Figure 0.2: The Spiral Model [17].

4. Planning of the next phase. At the end of each cycle in the

spiral model, a review that involves the primary people or

organisations concerned with the developed system is

conducted. This review covers the products developed during

this cycle and decides whether to continue with further cycle

of the spiral. If a decision of continuing another cycle is

undertaken, plans are drawn for the next cycle, and the

www.manaraa.com

30

5. resources required to carry out these plans are identified.

As the spiral model incorporates the different software development

models as special cases, it has many of their features including [47]:

1. It promotes developing specifications that are not necessarily

uniform, comprehensive, or formal. In that, great amounts of

details are not necessary unless their absence expose the

project to risks.

2. It includes prototyping as a risk reduction technique at any

development stage.

3. It accommodates rework of earlier stages as new risks need

resolution or more alternatives are identified.

Accommodating the different software development models’ features

in addition to avoiding their difficulties through the risk driven approach

is the most important advantage of the spiral model. In addition, it has

many additional advantages such as [41]:

1. It pays early attention to options that involve reusing existing

software.

www.manaraa.com

31

2. It includes preparation for the software product’s evolution,

growth, and change.

3. Identifying all the objectives and constraints during each cycle

of the spiral enables incorporating the software quality

objectives such as the performance, useability, and reliability

into software product development.

4. The risk analysis and validation executed within the spiral

cycles enables early elimination of the errors and unattractive

alternatives identified within these cycles.

5. It does not involve separate approaches for each of software

development and software maintenance. Hence, maintaining

a software product requires initiating a new maintenance

spiral.

On the other hand, the spiral model suffers from the disadvantage of

relying to a great extent on the developers’ risk-management

experience and their ability to identify and manage the sources of

project risks. Hence, if risks have not been correctly identified or

evaluated for a software project, this project will proceed to give false

www.manaraa.com

32

 impression about the progress while it is actually heading for failure.

2.4.3.Extreme Programming

EXtreme Programming (XP) is a light-weight software engineering

methodology created by Kent Beck and others [32] for developing

software projects by small-to-medium-sized co-located teams.

XP is considered the most well-known and widely used method

amongst set of methods named Agile methods [32]. Development of

these methods has been promoted by the dissatisfaction with the

overheads involved in design methods. Thus, all agile methods focus

mainly on the system’s code instead of design. Moreover, they are

based on iterative software development approach and intended to

quickly produce working software and evolve it to meet changing

requirements [32].

Agile methods are based on five main principles defined to lower the

cost of change during the development and increase the users’

involvement [32]:

www.manaraa.com

33

1. Customer’s involvement. 2. Incremental

development.

3. People not process. 4. Embrace change.

5. Simplicity.

XP is derived from good practices in software development that have

been known for a long time. It primarily focuses on five values [32]:

communication, simplicity, feedback, courage, and respect. These

values are used to guide its defined practices that are employed in

developing software systems, and evaluate any new practices that

might be introduced in the future.

XP works well if used to develop software systems with requirements

that change rapidly, involve prototyping or new technology, or small

systems that can be managed through informal methods. The

environments of these systems should also enable close

communications, inexpensive interface changes, and automated

testing [32].

www.manaraa.com

34

Figure 0.3: Extreme Programming Development Cycle [32].

In order to increase development speed and productivity, facilitate

problem domain and system understanding, increase product quality,

facilitate changes, and minimise their costs, XP defined twelve

practices that define the spine of this methodology and conform to its

defined values mentioned above. These practices are defined to

interact and reinforce each other as explained below [32]:

1. Incremental planning. XP promotes planning for short three-

week cycles, where requirements (user stories) of these

cycles are written on cards and prioritised by customers, then

estimated in terms of effort by developers. These stories are

then divided into releases and used to schedule and estimate

the development tasks and cost, respectively, depending on

stories’ priority and available development time, as shown in

figure 2.3.

www.manaraa.com

35

2. Small Releases. As in iterative incremental development,

systems should be divided and delivered as frequent and

incremental increments or releases, where each release

should be as small as possible and provide some of the

required functionalities.

3. Metaphor. It is similar to system architecture that views the

whole system and shows how it works to provide the defined

goals.

4. Simple Design. Simplicity is a key value in XP that aims to

design the current requirements of the system regardless of

any anticipated future changes.

5. Testing. XP defines two types of testing: unit and acceptance

(functional). Unit testing should be automated and developed

before coding in order to test the code once it is written and

provides instant feedback. Acceptance tests are written by

customers based on user stories and they used to replace

requirements specification.

www.manaraa.com

36

6. Refactoring. Refactoring refers to the continuous redesign of

the system in order to improve its internal design and

responsiveness to change, but without changing its external

behaviour. This includes the elimination of redundant and

unused functionality with the intent to make the design simple

and easier to understand, modify, and extend.

7. Pair programming. Programmers should work in pairs in

order to think of better solutions together, check each other’s

code, and provide support for each other.

8. Collective ownership. Any one of the project team can

change any part of the system’s code at any time. This

practice is supposed to encourage the team members to work

closely together in order to produce high-quality design, code,

and test cases.

9. Continuous integration. Once a test is completed, its output

is integrated with the whole system.

10. 40-hour week. This practice is introduced to indicate that

the team should only work the normal required hours of work

a day.

www.manaraa.com

37

11. On-site customer. XP requires a full time customer’s

availability with the team during the work on the project. This

is required to provide quick feedback once required and

answer the team’s questions.

12. Coding standards. As programmers work in pairs and

any one of the team can change the code, standards should

be followed in order to make all system parts consistent. This

consistency would also facilitate communication among team

members.

XP practices highlight some differences between XP and other

conventional development methodologies such as [32]:

1. Most of the development models embrace the conventional

software engineering practice: “Design for change” as it is

believed that spending efforts and time anticipating changes

early in the development process might reduce the cost later

in the system’s life cycle. However, XP is against this as

anticipated requirements might change before becoming

relevant.

www.manaraa.com

38

2. As requirements specification defines one of the main bases

of software development in conventional development

processes, XP defines requirements as automated

acceptance tests instead of developing requirements

specification.

2.4.4.Rational Unified Process

Rational Unified Process (RUP) is a software engineering process that

provides a disciplined approach to enhance team productivity, and

deliver high quality software that meets its end users needs within

predictable budget and schedule. In order to enhance team

productivity and make all team members share common software

development language, process, and view, it provides them with a

knowledge base of guidelines, templates, and tool mentors for all

development activities [35].

Instead of producing large amounts of paper documents as in the

waterfall model, the RUP develops and maintains models that

represent the software system from different perspectives. Moreover,

RUP is supported by tools that automate large parts of it and produce

and maintain different artefacts associated with it such as visual

www.manaraa.com

39

 modelling, programming, and testing. The RUP is a configurable

process [35] that suits both small development teams and large

development organisations. It is based on a simple process

architecture that can be customised and extended to suit the needs of

various projects and organisations. In addition, it captures the

software development best practices that are commonly used by

successful organisations in the industry: iterative software

development, use of component-based architectures, visual modelling

of software, requirements management, change management, and

quality management.

www.manaraa.com

40

Figure 0.4: An Iterative Model Graph that Shows How RUP is
Structured [35].

RUP can be described along two axes [35]: horizontal and vertical as

shown in figure 2.4. The horizontal axis represents the time, and

shows the dynamic aspect of the development process as it is carried

out. This is expressed in terms of phases, cycles, and milestones. On

the other hand, the static aspect of the process is represented by the

vertical axis and is expressed in terms of artefacts produced or used

by the process, process activities, workflows (sequence of activities)

that produce deliverables, and workers employed in the process.

Along the horizontal axis, the RUP-development cycle is divided into

four consecutive phases: inception, elaboration, construction, and

transition, where each phase has a specific purpose and ends with the

milestone at which the output of that phase is evaluated.

RUP’s above technical details shows that it offers many more

advantages than the ones specified at the beginning of this section as

it 1) places special emphasis on iterations during the different phases

to enable the development team to consider any changes in the

requirements, and 2) focuses on continuous verification of the

developed product in the final phase in order to ensure the release of

best quality product within the shortest time.

www.manaraa.com

41

With respect to all features provided by RUP, it has been criticised by

many experts as it has the following disadvantages [47]:

1. It is strongly coupled to Rational tool set and payment to

Rational corporation is necessary to get the required tools to

use the RUP.

2. It is sometimes difficult for some stakeholders to get used to its

iterative nature.

3. It is only a development process and does not cover the

maintenance phase of the development life cycle of the

software system.

2.5. The Adopted Software Development Life Cycle

Having defined the problem domain to be researched, questions to be

answered, research objectives to be achieved, and methodology to be

followed, many questions have risen:

 How would the required e-government application be designed

and developed?

 How should the planned stages for developing the anticipated

application be enacted?

www.manaraa.com

42

Answers of these questions have been traced to the software

development life cycle to be adopted in the application of the defined

research methodology to address the research objectives and deliver

an operational software system.

The selection of the appropriate SDLC is dependent upon the context

of the research to be conducted. Many risks that might delay the

planned research schedule, minimise the research productivity, or

reduce its validity surrounding the development of e-government

applications. These risks have risen from the nature of the research

problem and its surrounding environment. The problem domain to be

researched (e-government applications) has been completely new to

the researcher. Hence, researcher’s knowledge of this domain has to

be developed from scratch. This fact resulted in being unable to

initially define a strict plan with exact time periods and milestones for

the research phases and the software development process required

within the research. In addition, it created many risks such as: 1)

inability to establish good understanding of the research problem and

hence master the research, and 2) inability to well understand the

www.manaraa.com

43

 requirements of the system to be developed Moreover, the research

time is limited to a strict timeframe which if exceeded would cause

rejection of the research.

In addition, the software system (e-government application) that is

required to be tackled during this research is dependent to a great

extent on external users (citizens) satisfaction. Therefore, their

involvement in the research and the software development process

has been required. As per the research environment, contacting the

client has been quite limited as he cannot be immediately available

once required.

The different SDLC models, which are discussed in previous section,

have been contrasted and evaluated against their fitness to the

research and development context as follows:

1. The waterfall model is not suitable as requirements should be

identified and documented early in the development process

which is not possible due to the limited understanding of the e-

government systems requirements and limited development

time. Moreover, requirements changes, which are expected

during the software development, are difficult to be

www.manaraa.com

44

2. accommodated following this model. Furthermore, a working

version of the software system will not be available until the

later stages of the development, and this would be too risky as

client’s unsatisfaction or rejection of the delivered system might

cause failure of the whole research. In addition, client’s

involvement which is required during this research is not

supported by this model.

3. the extreme programming approach is not suitable as it

requires the customer to be closely involved in the

development as one of the development team which is

impossible in this research. It also focuses on developing

systems with minimal formal documentation that are designed

to provide only the required functionality without any

consideration for future system extensions (new functionality)

which does not conform to the research objective of developing

a highly maintainable system using a well defined

methodology. Moreover, many of its practices that are

described in section 2.4.3 cannot be applied within this

research such as “pair programming” and “on-site customer”.

www.manaraa.com

45

4. Furthermore, it specifies that the customer should write his

requirements “user stories” and the acceptance test cases,

which is not acceptable for the customer himself nor in the

research environment. In addition, it uses the acceptance tests

as a replacement of the requirements specification which is

required for testing the research hypothesis, answering its

questions, and achieving its objectives. The system’s

maintenance also requires the requirements specification as it

identifies the core requirements and might define anticipated

system changes and expected system evolution. Although

some XP practices do not suit the context of the research and

software development, it has many practices that can be

valuable if adopted in the research such as test-driven

development, refactoring to eliminate redundancy and design

defects, continuous integration of the developed parts of the

system, and continual feedback from both the customer and

applied tests during the development.

www.manaraa.com

46

5. RUP provides features that are suitable for the required system

development. However, it requires payments for Rational

Corporation in order to use the different support tools required

to use the RUP. While the research is not supported financially

by any organisation, this payment is not acceptable for the

management and development team (i.e. the researcher).

6. The spiral model is found to be the most suitable one to be

adopted in developing the required e-government application.

This selection is attributed to the fact that the spiral model

couples the advantages of both the iterative prototyping nature

and the controlled systematic aspects of the waterfall model

[20,36]. In addition the risk-driven nature of this model enables

early mitigation of risks, which increases the probability of

development’s success and system’s acceptance. This is

crucial in developing the required system as many risk

elements are expected to rise during this development due to

the research nature specified earlier. Following the spiral

model would enable continuous but fair engagement of the

customer in the development process and hence continuous

www.manaraa.com

47

7. feedback. Requirements can be better understood through the

use of prototyping which might also enable the customer to see

a working version of the system early in the development

process, and hence, reduce the risk of system rejection.

Requirements changes can be easily accommodated during

the development and would follow controlled mechanism as

tradeoffs will be considered with respect to the expected risks,

identified objectives, and constraints. Moreover, the spiral

model pays early attention to the option of software reuse as

specified in section 2.4.2, which would enable faster software

development and hence reduce project’s risk.

Both the research hypothesis and its objectives focus on the

quality attributes (characteristics of excellence) of the required

software system. Hence, the selected SDLC model should

enable these attributes to be considered during the

development process. The spiral model enables this as it

incorporates the software quality objectives early in the

development process.

www.manaraa.com

48

One of the main advantages of the spiral model that supports

its selection is that it enables the use of different development

models in combination in order to best develop the software

system. Hence, attractive and useful practices and features in

other models can also be adopted during the development of

the anticipated system. These practices include test-driven

development, refactoring, and continuous subsystem

integration defined in XP. However, this selection of the spiral

model should be taken with carefulness during the

development as the spiral model highly depends on the

developer’s risk management ability and experience.

2.6. Research Methodology

Defining the research methodology, the approach of the research

process [21], to be followed is a crucial precondition for the success

of any research. There are two main paradigms, positivistic and

phenomenological, that the research can follow according to the

questions it aims to answer. These paradigms look at the world from

completely different perspectives.

Positivistic (quantitative) paradigm looks at the world as being external

www.manaraa.com

49

and objective, and that the observer is independent of the world. It is

mainly concerned with establishing causal laws and discovering

causal relationships between variables then relating this to theory.

Hence, positivistic approaches are concerned with collecting large

data volumes, i.e. quantitative data, which should be precise and

comparable. It is also concerned with testing hypothesis, and

generalising from sample to population [15]. Within this context, many

methods can be associated to positivistic methodology such as [21]:

1. Surveys, which are concerned with investigating a sub-sample

of a population in order to draw conclusions and predict

outcomes regarding the population.

2. Experimental studies: gaining knowledge by experiments

through repeated measurements, independent sampling,

matched pairing, and single subjects.

3. Cross-sectional studies, which are concerned with making up a

sample and a population at one point in time.

On the other hand, phenomenological (qualitative) paradigm doesn’t

look at the world as being objective. Instead, it assumes that the world

www.manaraa.com

50

is subjective and socially constructed. Also, it focuses on the

meanings and constructions that people attribute to the world based

on their experience. It is concerned with generating theories and

generalising from one setting to another. For this purpose, it uses

small samples of rich and subjective data [21]. There are many

phenomenological methods for collecting subjective data, such as

[21]:

1. Action Research, which is an approach in which the researcher

enters into a situation and participates in the activities carried

out within that situation (i.e. group or organisation) in order to

bring about change and observe results.

2. Case studies, which are investigation of a certain phenomennon

within a particular context.

3. Ethnography, which is an approach in which the researcher

collects data by observing people within their societies.

The lifecycle of this research passed through different stages that

required a hybrid approach utilising both positivistic and

phenomenological approaches. The work in these stages has been

www.manaraa.com

51

 iterative, incremental, and risk driven following the spiral model of

software development [17]. Therefore, each stage: problem research

and understanding, requirements engineering, software design,

implementation, and testing have been performed in one or more

iterations, and used positivistic, phenomenological or both techniques.

The rationale behind adopting the spiral model in this research is

discussed in chapter 3.

Interviews, a phenomenological method that involves discussing

issues with people [21], have been conducted to gain a detailed

understanding of the problem to be researched. This has been

achieved by interviewing e-government applications users (citizens)

and structuring these interviews in order to utilise the time, record the

questions, control the range of topics, and facilitate later analysis [21].

Moreover, the literature has been surveyed in order to collect more

information required to better understand the research problem being

investigated and its related issues, and to elicit the implemented

system’s requirements as detailed in following chapters. This survey

has been conducted by reading different resources such as books

[5,51], journal and conference papers [30,38,49], technical reports

www.manaraa.com

52

[4,8], and reference manuals [29,39,46,52] that detail the different

artefacts of e-government applications: definition, construction,

design, experiments, and history. The collected data has been

studied, analysed, evaluated and compared to develop better vision

of the research problem, its history, and its environment.

Collected data has been used for designing and developing an

example e-government application and conducting experimental

studies to test the functional requirements and quality attributes (i.e.

characteristics of excellence) of the developed e-government

application.

Triangulation is the “use of different research approaches, methods

and techniques in the same study” [15]. Both data and methodological

triangulations [15] have been embraced by the conducted research.

Data required to develop the software system has been collected

using both positivistic (surveying the literature: books, journal and

conference papers, etc) and phenomenological (interviews)

approaches. In addition, the used research approach, as described in

section 2.6, is a hybrid of both positivistic and phenomenological

approaches.

www.manaraa.com

53

Triangulation in this context has been used to increase research

creditability: validity, reliability and accuracy. Data triangulation has

been used in order to overcome the potential bias, sterility, and

incompleteness that may result from collecting data by one way. On

the other hand, methodological triangulation has been used to

increase the research productivity and enhance the used qualitative

methods [22]. For example, the literature has been surveyed before

interviewing citizens in order to have a clear understanding of the

required system and focus the requirements elicitation activity. In

addition, testing the software system has been done following different

approaches such as white and black box testing in order to increase

the reliability and accuracy of the results.

2.7. Summary and Conclusion

This chapter summarised the output of the conducted literature review

on e-government applications. Further, it summarised the most well

known and widely used software development life cycle models that

can be followed to develop software systems. In addition, the main

advantages and disadvantages of these models as identified in the

literature have been presented. Based on the review and evaluation

www.manaraa.com

54

of the different software development models, the spiral model has

been recommended to design and develop e-government

applications. The rationale behind selecting the spiral model for the

development of this type of applications is also detailed in this chapter.

The next chapter describes the software development phases

(requirements engineering, design, coding, and testing, respectively)

and the activities that needs to be enacted during these phases based

on the followed software development model.

www.manaraa.com

55

Chapter three:

 The Proposed methodology

3.1. Introduction

In this chapter, the details of the software development phases that

should be enacted in the adopted SDLC, and spiral process model

[17] as detailed in previous chapter are discussed as part of the

proposed OO methodology to develop e-government applications.

The Requirements Engineering (RE) phase is discussed in section

3.2. System design activities are detailed in section 3.3. The concepts

of the recommended implementation and testing activities are

demonstrated in sections 3.4 and 3.5, respectively.

3.2.The Requirements Engineering Phase

The requirements specification is the most important output of the

Requirements Engineering (RE) process. This process [48]

represents an early phase of the SDLC conducted to elicit the

requirements of the software system, analyse these requirements,

develop requirements specification, and validate the elicited

requirements as discussed in the following subsections. In parallel,

requirements’ change management activity was undertaken to control

the evolution of the system’s requirements.

www.manaraa.com

56

The initial understanding of the problem domain and client’s

requirements are normally limited in the early stages of software

development so that the RE process is recommended to be carried

out in an incremental and iterative manner for developing e-

government applications following the adopted spiral development

model. A review at the end of each iteration should be conducted in

order to assess the outcomes of this iteration, and plan the next

iteration, if required. During the RE process, requirements should be

visualised, specified, and documented as UCs in the system’s UC

model [34]. This UC model is better being comprehensive enough to

specify the services of the anticipated system so as to drive the

consequent SDLC phases. UCs (requirements) should be prioritised

following the “Must have”, “Should have”, “Could have” and

“Won’t have” (MoSCoW) scheme [37,40].

The bulk of the RE effort occurs early in the SDLC so as to minimise

the cost of changing users’ requirements at late stages of the

development process. However, studies showed that about 20% of

users’ requirements might be elicited or changed in the later stages of

the SDLC due to better understanding of users’ objectives and

www.manaraa.com

57

requirements and more directed feedback [47]. This may result in re-

entering the RE phase of the SDLC in order to: ensure that no

inconsistencies have been introduced by adding these classes and

relations, analyse, document, and validate the emerged requirements.

3.2.1. Requirements Elicitation

This activity is mainly concerned with discovering and identifying the

entities of the problem domain under investigation and the relations

among them. It is also concerned with gathering both user and system

requirements. Thus, different techniques may be used in order to

understand the problem domain of the system under investigation,

define the problem domain objects and relations among them, define

the scope of the system, identify the stakeholders, the services to be

provided, and the constraints on both the system and the development

process.

The use of UC modelling may help in focusing the requirements

gathering, and discovering some missing requirements. It also

participates in maintaining better understanding of the problem

domain, and defining the initial blueprints of the system architecture

and class models that may be refined in the design phase.

www.manaraa.com

58

3.2.2. Requirements Analysis

Elicited requirements, especially the volatile ones that are related to

the customer, should be analysed in order to ensure consistency and

completeness. Both functional and non-functional requirements

(NFRs) should be analysed during and after the elicitation phase in

each RE iteration.

Although most of SDLC models show that designing the software

system starts after the RE phase, this might not be true in real life.

Designing the required system started during the RE phase, and had

its effect on the elicited requirements. Designing the UC model during

the requirements engineering phase may help in addressing the

architectural aspects of the anticipated e-government application.

Forward and backward traceability should be maintained during this

phase. “Backward-from” traceability with the client vision document,

and “forward-from” and “backward-to” traceability should be

maintained between both system’s requirements and design.

3.2.3. Requirements Validation

This is an important RE process that is enacted to establish that the

elicited and documented requirements provide an accurate account of

www.manaraa.com

59

stakeholders’ requirements [24,48]. It is intended to check the

requirements for validity, consistency, and completeness. It is also

concerned with checking that the requirements can be actually

implemented within the specified budget, schedule, and other

constraints. The importance of this process comes from the fact that

repairing a requirements problem by making a change in the

developed system is much more expensive than fixing design or

coding error.

Different techniques may be used to validate requirements: (1)

conduct formal reviews for the requirements document, and (2)

construct system prototypes for discussion with the client.

3.2.4. Requirements Change Management

This process is responsible for managing the requirements changes

during the life cycle of the software system [41]. Hence, it is carried

out in parallel with all the RE activities specified above, and all the

subsequent SDLC phases until the system is delivered and put into

operation.

Sommerville’s [47] requirements change management process is

suggested to be adopted in the proposed methodology. This results in

www.manaraa.com

60

 each requirements change to pass through three stages: problem

analysis and change specification, change analysis and costing, and

change implementation.

3.3. The Design Phase

The design of a software system is usually documented as a set of

graphical models that visualise this system from different perspectives

[42]. These models represent a realisation of the requirements elicited

in the requirements engineering process that precedes the design

phase within the SDLC. Moreover, they can be used to assure that

requirements are satisfied, and that the design supports the non-

functional requirements (NFRs) before starting the coding phase of

the SDLC. This might result in reducing the changes that might

emerge during the coding phase, and hence reducing the cost of

applying these changes.

Since an object oriented (OO) methodology is proposed in this

research, the anticipated e-government application is better designed

using a set of Unified Modelling Language (UML) models. UML has

been selected to be adopted since it is the most common modelling

language for OO systems. It provides different diagrams that can be

www.manaraa.com

61

used to model the static structure and dynamic behaviour of the

software system components. The static structure diagrams include

class, object, component, and deployment diagrams, whereas the

dynamic behaviour diagrams are: sequence, activity, collaboration,

and statechart diagrams [42]. Two levels of systems design need to

be considered: architectural high level design and low level class

diagrams.

Recent developments in software engineering [9, 31, 34, 53] suggest

that software system’s architecture consists of several views: logical,

process, implementation, deployment, and use case views. The

logical view of a system’s architecture encompasses the vocabulary

of the problem, the collaborations that realise the system use cases,

the subsystems that provide the central layering and decomposition

of the system, and the interfaces that are exposed by those

subsystems and the system as a whole. The process architectural

view encompasses the threads and processes that form the system’s

concurrency and synchronisation mechanisms. The implementation

architectural view encompasses the components used to assemble

and release the physical system. The deployment architectural view

www.manaraa.com

62

encompasses the nodes that form the system’s hardware topology on

which the system executes. And, the use case architectural view

encompasses the use cases that describe the behaviour of the system

as seen by its end users and other external stakeholders. Activities

within a view may require information from other views, and elements

from one view may depend on or be driven by those of another.

Moreover, the views may need to be ordered so that the information

shared between two or more views remains consistent. An exception

to this rule occurs with the use case view that drives all other system

views as depicted in figure 3.1. However, some systems do not require

all views, and others require additional views such as: data and

security views.

Figure 0.1: Software System's Architectural Views [31].

Deployment View

Process View

Logical View

Implementation View

Use Case View

www.manaraa.com

63

3.4. The Implementation Phase

A recent approach software systems development is the Test Driven

Development (TDD) [10]. This approach implies that the test cases

are designed first, and then the code is implemented so as to produce

clean running code. Following this approach, the components’

interfaces should be designed first, and then the test cases for testing

each component should be designed based on these interfaces. In the

proposed methodology for developing e-government applications, we

recommend adopting TDD to meet the universally defined

characteristics of excellence.

Testing each software component should be accomplished according

to its defined responsibilities in the system requirements and design.

However, some new test cases emerged during the development

phase which should be added to the pre-prepared test cases. Finally,

among the diverse advantages of test driven development, e-

government applications development may benefit from:

1. Test driven development shortened the programming feedback

loop.

www.manaraa.com

64

2. Test driven development facilitated the delivery of high quality

source code.

One of the most important features of OO development, in general,

and e-government applications development, in particular, is that it

facilitates the reuse of already developed and welltested components

instead of reinventing the wheel. This reuse can be done in many

different ways based on the need and availability of such components.

Some components can be integrated with the system and used

directly, while others can be extended and customised to fit the

context of the new system.

In addition, design patterns [26] have been defined to help the different

stakeholders understand the software system design and discuss it

easily. Hence, some design patterns may be utilised in designing e-

government applications so as to improve its maintainability and

understandability and to save the time needed to reinvent new

solutions. Examples of useful design patterns in the context of e-

government applications include Wrapper and Proxy Pattern.

Wrapper pattern may be used to facilitate integrating new online

systems with legacy traditional subsystems. Proxy patterns may be

utilised to enforce the implementation on some security requirements.

www.manaraa.com

65

3.5. The Testing Phase

Testing is considered as part of a larger software engineering (SE)

activity named software Validation and Verification (V & V). The

ultimate goal of the V & V activities is to establish confidence that the

SoftWare (SW) system fits for its intended use. However, verification

and validation activities are not the same. Verification is concerned

with the developers’ view of the system. It is intended to show that the

SW system is fault-free and conforms to its specification; i.e. meets

its specified functional and non-functional requirements. On the other

hand, validation is concerned with the clients’ view of the system, and

is conducted to ensure that the system meets its intended users’

requirements. This difference between verification and validation is

highlighted by Boehm’s definitions [47]:

“Validation: Are we building the right product?”

“Verification: Are we building the product right?”

V & V activities are enacted continuously throughout the software

development process, and adopt static and dynamic techniques for

checking and analysing the software system. Static techniques can be

applied without running/executing the software system, and are

www.manaraa.com

66

 considered the main techniques for detecting errors in requirements

specification and design. However, they can not be used to prove that

the software meets its requirements, or to check its emergent

properties. Static techniques include software inspections or reviews

that are applied to purify the analysis, design, and coding SE activities

through checking and analysing their produced documents (output).

These documents include the requirements specification, design

diagrams, and the source code. Dynamic techniques are used as

complementary techniques for the static ones within the V & V of the

software system. The main dynamic technique used is software

testing. It is also considered the main V & V technique. Software

testing entails running the software system’s implementation with test

data, and examining the software’s outputs and operational

behaviours so as to uncover errors and defects that were made

unintentionally as it was designed and constructed. In addition, it

checks whether the developed system behaves as required (i.e.

meets its functional and non-functional requirements.). Figure 3.2

shows the stages of the software development process where each of

www.manaraa.com

67

the static and dynamic techniques can be used.

Figure 0.2: Static and Dynamic Verification and Validation [47].

3.6. Summary and Conclusion

The software development phases of the proposed OO methodology

to design and develop e-government applications were presented in

this chapter. The requirements engineering phase defined the

requirements elicitation, analysis, validation and change management

workflows. The design phase explained the recommended high level

and low level object oriented design concepts to be adopted in the

proposed methodology. The implementation and testing phases

described the recommended best practices to be adopted in the

www.manaraa.com

68

proposed methodology to develop e-government applications.

In the next chapter, the application of the proposed methodology on a

selected e-government application case study is detailed, followed by

a critical evaluation for this application in chapter four.

www.manaraa.com

69

Chapter four: case study-email access system

4.1. Introduction

In this chapter, the application of the proposed methodology using an

“Email Access” e-government application is demonstrated. Three

spirals (iterations) were needed to deliver the operational system. The

first iteration, as detailed in section 4.2, is the shortest on and was

devoted to define the context and boundaries of the system. The initial

blue prints of the system architecture started to appear towards the

end of the first iteration. The second and third iterations specialized in

further analysing, designing, and developing the system as will be

detailed in sections 4.3 and 4.4. Validation and verification is a

continuous activity that was adopted in all iterations in its both types:

static and dynamic when necessary. Risk management of this case

study is discussed in section 4.5 followed by a critical evaluation in

section 4.6. Finally, section 4.7 summarises the main conclusions of

this chapter.

4.2. Iteration One

The first iteration is the shortest iteration among the three. It lasted for

two working weeks. The first step in this first iteration researched the

www.manaraa.com

70

reasons that justify the need for this type of systems: Email Access. It

was found that e-government environment needs for a formal

communication channel to let all employees communicate by using

secure and special application. On the other hand, citizens should be

able to use the system to report their complains and suggestions.

Therefore, the respective literature has been surveyed in order to

collect more information required to better understand e-government

Email Access systems and their related issues, and to elicit the

system’s requirements as detailed later in this section. This survey

has been conducted by analyzing different resources such as books

[5,51], journal and conference papers [38,49], technical reports [4,8],

and reference manuals [29,39,46,52] that detail the different artefacts

of e-government applications, in general, and Email Access, in

particular: definition, construction, design, experiments, and history.

Furthermore, a number of specialized interviews with domain experts,

working in local regional office for an international company [29], in e-

government applications have been conducted to support the process

or requirements elicitation.

www.manaraa.com

71

Consequently, three main stakeholders were identified in this context:

1- Employees.

2- Application administration.

3- Outside ministry people (citizens).

Security is of critical nature in such type of applications; hence, every

user has a username and a password, and the user can change his

password as often as he finds it necessary. Other tools for secured

communication channels and backup should also be utilized.

4.2.1. Business Requirements

The purpose of the anticipated system is to send/receive E-mails in

an organization and also stores these Emails into the database. To

cater for these two main activities, a number of options should be

supported: send, forward, reply, reply all, next, previous, set priority,

move, and maintain folders (e.g. inbox, outbox, etc).

In addition, an administration subsystem is required to define and

maintain organization’s structures. This includes the

creation/editing/deletion of sectors, departments, and sections. Also,

there are different types of “Employee types” in each section: minister,

secretary, undersecretary, manager, sections chef, and employees

www.manaraa.com

72

. Table 4.1 summarizes the list of functionalities required for the

anticipated system, and figure 4.1. presents the corresponding use

case model that joins the system functionalities with the

corresponding actor(s).

Table 0.1: System Functionalities.

No. Description
Requirement

Type

Admin Section

1.
Admin login, and admin user

management

Must

2.
Employee -

Add/edit/Delete/View/Search

Must

3.
Employee Category -

Add/edit/Delete/View/Search

Must

4. Sector – Add/Edit/Delete/View Should

5.
Department –

Add/Edit/Delete/View

Should

6. Section – Add/Edit/Delete/View Should

User section

1. User login Could

2. Registration and edit profile Must

3. Role management of the users Should

4. Forgot password Could

www.manaraa.com

73

5.

Sending Emails with multiple

upload options and according to

the rules specified and role of the

user

Should

6.
Maintaining the address book of all

users according to the rules

Could

7.
Forward, Reply, Reply all, Next,

Previous, Move options

Must

8. Email options like set priority etc Could

9
Maintain folders like inbox, outbox,

etc / create folder options

Should

 Create message rules and apply Won’t

www.manaraa.com

74

Figure 0.1: System Use Case Model.

The main outcome of identifying the system stakeholders and their

corresponding functionalities is the identification of the main

www.manaraa.com

75

subsystems of the system as presented in figure 4.2. This has been

further analyzed to design the object oriented three tiers architecture

of the system as depicted in figure 4.3.

Figure 0.2: Subsystem of Email Access System.

Figure 0.3: System Architecture.

e-Government
E-mail Access

System

Administration
Subsystem

Users Subsystem
Suggestions
Subsystem

www.manaraa.com

76

4.3. Iteration Two

The second iteration is longer than the first one that lasted for five

working weeks. The main activities of this iteration are: requirements

analysis, system design, and testing (requirements and design

validation).

4.3.1. Requirements Analysis

In the administration section of the system, all the application related

permissions are maintained. The anticipated system has different

categories like Sectors, Departments and Sections. Each category

contains different Employee Types and the admin has the permissions

to Create, Edit, and Delete each category and each employee type.

The employee types are: Minister, Secretary, Undersecretary,

Manager, Sections chef, Employees.

The administrator creates, edits, or deletes the sectors information.

Each sector having different fields like: Sector name, Location and

Phone number. Each Sector contains different “Departments” in

which the administrator creates, edits, or deletes its information. Each

department has different fields like: Sector name, Department name,

www.manaraa.com

77

 Location and Phone number.

Each department contains different “Sections”. In each section, the

administrator creates, edits, or deletes the Section’s information.

Each section has different fields like: Sector name, Department name,

Section name, Location and Phone number.

Each section has employees, in which the administrator creates, edits

or deletes. In this context, the Employees Role should be defined

(”minister, secretary, undersecretary, manager, section chef,

employee). Also sector, department and sections information should

be defined. Figure 4.4 depicts the elaborated use case diagram for the

maintain employee info use case as an example of how each use case

in the system level use case model has been elaborated to drive the

development of subsequent phases. On the other hand, figure 4.5

shows the elaborated use case diagram for the “Maintain Sugestions”

use case.

When a particular employee interacts with the system, the system

ensures that this user is authorized to do so based on his/her

username privileges specified in his/her respective user-profile. The

system prompts for User ID and Password. The

www.manaraa.com

78

 system verifies that the Username provided corresponds to a valid

user profile and that the password matches that of the user-profile’s

password.

Figure 0.4: Use Case Diagram of Maintain Employee Info Use
Case.

Figure 0.5 Use Case Diagram of Maintain Suggestions Use
Case.

www.manaraa.com

79

Based on user-right privileges stored in the user’s user-profile (as

actor roles), specific services (use-cases) can be used by this

user. The user is properly authenticated for the task he/she will

attempt to use.

Else, if the User ID does not exist or the password does not match,

then the system denies further operation as follows:

The login screen with empty user ID and password fields is

redisplayed for another attempt of login.

In a third failing attempt, the system returns control with inability to use

any service.

If the user authorization is unsuccessful then the system does not

recognize the user and, subsequently, shall not grant access to the

system. Figure 4.6 shows an abstracted sequence diagram for the

login process.

www.manaraa.com

80

Figure 0.6: Login User Sequence Diagram.

In the “minister/secretary” part of the system, corresponding users

have permissions to send emails to all of the users in the organization.

Here five options are available: Minister/Secretary, All

Undersecretaries, All Managers, All Sections chefs, and All

Employees. There are two options to send emails. Those are: (1)

“Multiple select in receiver list”, and (2) “Upload attachment”.

“Under secretary” has permissions to send emails to particular users

in the organization. Here it consists of four options: secretary , All

under secretaries , All managers in his sector , All section chef's in his

sector , All employees in his sector. There are two options to send

emails. Those are: (1) “Multiple select in receiver list”, and (2) “Upload

www.manaraa.com

81

 attachment”.

“Managers” have permissions to send Emails to particular users in the

organization. Here it consists of four options: under secretary in his

sector, all managers in sector, all section chefs in his Department, and

All employees in his Department. There are two options to send

emails. Those are: (1) “Multiple select in receiver list”, and (2) “Upload

attachment”.

“section chef’s” has permissions to send Emails to particular users in

the organization. Three options are available: manager of his

department, all section chefs in his department and all employees in

his section. There are two options to send emails. Those are: (1)

“Multiple select in receiver list”, and (2) “Upload attachment”.

“Employees” have permissions to send Emails to particular users in

the organization. Two options are available: section chef and all

employees in his section. There are two options to send emails. Those

are: (1) “Multiple select in receiver list”, and (2) “Upload attachment”.

www.manaraa.com

82

4.3.2. System-level Non-Functional Requirements

NFRs of a system are defined as constraints on the services offered

by the systems. Email Access NFRs are classified based on

Sommerville’s [47] classification as: product, organisational, and

external requirements.

a.Product

Product-related requirements specify the characteristics that Email

Access System should possess. The most important product-related

NFRs for the client are usability, security, and reliability. However,

additional NFRs have been considered such as portability and

maintainability.

b. Usability

Email Access should provide easy-to-use GUI for its users. Email

Access usability should be enhanced by providing informative error

messages, online help facilities, and consistent user interface. In

addition, the system should be learned by average users within two

hours.

 c.Security

Security NFR should be included in Email Access to ensure that

unauthorised access to the system is not allowed, and the integrity of

www.manaraa.com

83

 the underlying Email Access system. Hence, the user’s roles may

only be granted/revoked by the system administrator which will

explicitly define the access authorities of the different users of the

system. In addition, each user should have a distinct username and

password to identify his authorities during the logon process to the

system.

D. Reliability

The system’s reliability NFR represents constraints on the run-time

behaviour of the system. This includes the system availability and

failure rate. Hence, Email Access should be available whenever

requested by the users (i.e. 100% availability and 0% failure rate).

e. Portability

Email Access should be compatible with different operating systems.

It should be operated and tested under both Windows 2000 and

Windows XP operating systems. Also, different browser types and

versions should be supported.

f. Maintainability

The software system should be flexible to change so as to

accommodate new requirements. It should also allow changes for

improvement such as improving its performance.

www.manaraa.com

84

g.Organizational

Organisational NFRs are related to the client’s and developer’s

organisations. They are derived from their policies and procedures.

These requirements include delivery and implementation

requirements.

h. Delivery

The system is required to be delivered with all its related documents

(i.e. requirements, design, user guide, coding, and test plan

documents) before January 2008.

i. Implementation

The system is required to be implemented using object oriented

programming language to support other features such as

maintainability.

g.External

External requirements are derived from aspects external to the system

and its development environment. For Email Access no such

requirements are defined. Nevertheless, interfacing with external

systems has been investigated to inform whether these are applicable

within the scope of the project.

www.manaraa.com

85

4.3.3. System Design

The design of the Email Access system passed through a number if

internal iterations. Each iteration consists of developing a

corresponding class diagram and validating it against the system

requirements to confirm the complete and correct realization of them.

Figures 4.7 – 4.9 show three versions of the system class model

before arriving at the final one shown in figure 4.10.

Figure 0.7: Class Model version 0.1.

www.manaraa.com

86

Figure 0.8: Class Model Version 0.2.

www.manaraa.com

87

Figure 0.9: Class Model Version 0.3.

Figure 0.10: Class Model Version 1.0.

www.manaraa.com

88

A number of object oriented design concepts has been adopted and

applied, as can be concluded from figures 4.7-4.10, in Email Access

system that participated in achieving system NFRs and e-government

application characteristics of excellence. These include:

1. Information Hiding: all the implementation details of Email

Access components are hidden. Users can use these

components through their facades, where these facades

provide the services of these components without exposing the

internal implementation details. Moreover, Classes are also

encapsulated to support this principle. All the classes’

attributes are defined as private, and can only be accessed by

other classes through their provided (public) methods.

2. Design for specification, not for implementation: the classes

and components (packages) of Email Access have been

designed based on the understanding of the problem domain.

Implementation details have been ignored during this stage. As

detailed earlier, interactions among classes and components

have been accomplished through their provided

services/interfaces without any assumptions made about the

implementation details. In addition, the classes, attributes, and

www.manaraa.com

89

3. methods’ names are not related to the implementation.

Instead, they reflect the purpose of defining and using them

(their specification).

4. Low coupling and high cohesion: As mentioned earlier,

classes and components have been designed to be loosely

coupled and highly cohesive. Classes, and their methods, have

been designed to do one thing and do it well.

4.3.4. Requirements and Design Validation

Validating the requirements and design of Email Access system has

been conducted using different techniques. Requirements and design

artefacts have been reviewed for anomalies and omissions. This has

been done by conducting informal reviews to check the requirements

for verifiability, comprehensibility, traceability, and adaptability. The

developed UC model helped in focusing this process and in

developing the test cases for testing the documented requirements

and their corresponding realizing design, and checking the system’s

verifiability before coding the system.

www.manaraa.com

90

4.4. Iteration Three

In this iteration, the development of Email Access system is

concluded. Two main activities (development and testing) were

conducted within this 6 weeks iteration. However, requirements and

design phases were re-visited to handle several cases of emerging

functionalities.

A number of integrated technologies were used in the development of

Email Access system. These include:

1. Front End Development: C# Programming Language, Java

Script.

2. Middle Tier: C# Programming Language.

3. Back End Development: Microsoft SQL Server.

4. Operating System: Windows 2000 Server, Windows XP.

5. Browsers Compatibility: Microsoft internet explorer, Netscape,

and Opera.

Regardless of how structured the development phase is, none can

guarantee the correctness of the software system, nor provide full

testing coverage, i.e. test all data inputs and all execution paths.

Hence, two types of testing were adopted in the development of Email

www.manaraa.com

91

 Access system: (1) “testing to specification” which is also called Black

Box Testing, and (2) “testing to code” which is also called White Box

Testing. Both of the above techniques were used to uncover different

classes of errors, and hence should not be used as alternatives to

each other.

4.4.1. Black Box Testing

Black box testing technique refers to the tests that are conducted to

specification. This technique tests the functionality of the software

system through its provided interface. It is conducted to ensure that

the software system provides all the functions specified in the

specification, with little consideration for the internal logical structure

of the software. In addition to testing that none of the specified

functionalities is missing. Black box testing can be conducted to test

the non-functional requirements that are constrained by the clients,

such as performance, reliability, and security.

The idea of testing the software system through its provided interface,

and without knowing the system’s internal structure, enables the users

to test the system instead of the developers themselves. Studies

showed that testing the software system by its users or any other

www.manaraa.com

92

 independent test group, instead of the system’s developers, can give

quite more confidence that the software system fits for its purpose.

This is based on the idea that software testing should be destructive,

and developers might be unable to destroy what they had built. They

would usually design and execute tests that will show that software

system works as required, instead of discovering the inadvertent

errors in the system.

For the implemented system, Email Access, black box testing had

been applied to the different system components, and then to the

system as a whole. It had been conducted to test whether the system

and its components correctly provide all the specified functionalities,

correctly use the different data structures, and to find any initialisation,

termination, or interface errors.

Black box testing had been applied to the implemented software

system with the purpose of discovering the existence or absence of

classes of errors, instead of uncovering errors that are only related to

the specific tests performed. In order to achieve this goal, some

supporting methods had been used such as equivalence partitioning

and boundary value analysis methods.

www.manaraa.com

93

4.4.2. White Box Testing

White box testing considers the internal structure of the software

components to derive the test cases. In this approach, the tester

should study the code so as to decide the data inputs for the test

cases. These test cases should be designed to guarantee the

execution of each independent path in the software component at

least once, exercise both the true and false sides of all logical

decisions, execute every loop within its operational bounds and at its

boundaries, and exercise every data structure used in the software

component to ensure its validity.

In order to determine how much code, of the developed software

system, had to be exercised by the white box testing, both operation

coverage and path coverage methods had been applied.

Operation coverage method had been applied to the

methods/operations of the system classes, and the services provided

by the system and its subcomponents. It had been applied to ensure

that each of these methods and services had been exercised at least

once. On the other hand, path coverage method had been applied for

finding and exercising the independent execution paths in the code of

www.manaraa.com

94

 the software system, and more specifically in the code of methods

and services provided by the system classes and components

respectively. For small methods and services, every independent

execution path had been defined and exercised at least once. But, for

the large methods, this was quite difficult. Thus, the most critical and

frequently used paths had been defined and exercised instead.

Figures 4.11 – 4.14 represent screenshots from the developed and

tested Email Access system, Samples of source code of these

screens are shown in Appendix A.

Figure 0.11: Email Access Options Page.

www.manaraa.com

95

Figure 0.12: Email Access Sector Maintenance Page.

Figure 0.13: Email Access Assign Employees to Section Page .

www.manaraa.com

96

Figure 0.14: Email Access User Inbox Page.

4.5. Risk Management

Any research and software development is candidate to have several

areas of concerns and risks. Accordingly, a list of most candidate risks

throughout the research lifecycle has been prepared. In addition, a

contingency plan for resolving each risk has been prepared in order

to initiate appropriate corrective actions once the risk possibility

increases.

In this research, two main risks have been identified. Details of the

identified risks (time limits and requirements change) and the

www.manaraa.com

97

 corresponding contingency plan(s) are discussed in sections 4.5.1

and 4.5.2, respectively. These risks and others if emerged during the

research together with their contingency plans are reviewed and

managed regularly in each iteration.

4.5.1.Time Limits

During the research, the start of many activities will be dependent

upon finishing other activities. Thus, if finishing one activity is delayed,

then all subsequent activities will be delayed correspondingly. The

worst case would happen if the delayed activity lies in the critical path

of the research plan. If this is the case, then, the research will not be

finished on time, which is firmly restricted to January, 2008.

 Risk Avoidance

Each activity is assigned a period of time more than what is actually

required. In addition, the research has been planned to be finalised on

October 2007. However, if any delay occurs in the research, and the

specified end date of the initial plan is exceeded, the remaining

activities would be planned to be enacted and executed before

January 2008.

www.manaraa.com

98

Risk Minimisation

The research progress will be reviewed every two to three weeks and

at the end of each iteration to ensure being on schedule. If lateness is

encountered, then suitable actions would be undertaken according to

the situation. Example of possible action is to increase the working

time on the activity to be finished earlier (i.e. working overtime).

4.5.2.Requirements Change

Changing requirements is a problem that faces most of the

development approaches especially the ones that develop the

software incrementally. In addition, due to the dynamicity nature of

web based applications, in general, and e-government applications, in

particular, changing requirements is a real risk in this research project.

Reasonable changes, which can be applied within the planned period,

might be accepted. However, if this exceeded the expectation, it might

confuse the development and delay the project which might result in

project failure.

 Risk Minimisation

The spiral model is adopted in the proposed development process.

Hence, risks will be evaluated with each iteration. If requirements have

www.manaraa.com

99

been changed, the effect of this change and the risks that might rise

will be evaluated accordingly. Based on this evaluation, changes

might be accepted (if their risks are low), delayed for later iterations (if

risks can be managed), or rejected (if their risks are high/serious).

4.6. Critical Evaluation

Given that the anticipated object oriented design methodology is

developed and tested as detailed in previous chapters, this section

evaluates the proposed methodology within the framework of the

adopted software development process, spiral model, and hence, the

extent to which the research aims and objectives have been

addressed. Section 4.6.1 evaluates the adopted SDLC in relation to

the conducted research and development. A brief evaluation of the

developed software system, Email Access, is presented in section

4.6.2. The extent to which the research questions, aims, and

questions has been addressed is discussed in section 4.6.3.

4.6.1. Research Phases and Software Development Process

This research passed through different stages during its lifetime.

However, two main stages dominate:

www.manaraa.com

100

1. Investigating the problem domain of e-government applications

design methodologies and proposing a new object oriented

design methodology for this type of applciations.

2. The application of the proposed methodology on a selected

Email Access system to evaluate the proposed methodology

and participating in addressing the research questions and

objectives.

During the fist stage, an extensive literature survey has been

conducted to understand the problem domain. This survey could not

find a comprehensive UC model that realizes the functionality of e-

government applications. Thus, utilizing a use case based object

oriented approach has been adopted in this research.

The development of the anticipated Email Access has been

accomplished following a hybrid software development life cycle.

Mainly, the spiral model has been followed, but other principles and

practices of other software development life cycles such as XP and

iterative and incremental development have been adopted. These

practices include test-driven development, refactoring, continuous

subsystem integration, and development of small releases.

www.manaraa.com

101

Following the spiral model, the development of Email Access has

been conducted iteratively and incrementally which is known to be a

good approach for developing web-based applications, in general,

and e-government applications, in particular that are characterised by

high volatility and complexity. Each development phase, i.e. RE,

design, implementation, and testing, has been enacted within one or

more iterations until the defined purpose and objectives of this phase

are achieved, evaluated, and agreed. This has led to good

understanding of the system to be developed and sharing the same

vision of the system between the different stakeholders of the system.

The fact that the spiral model combines the controlled systematic

aspects of the waterfall model with its iterative approach facilitated the

definition of static phases of the development process (RE, design,

implementation, and testing), and hence, going over the problems

introduced by the evolutionary development approaches that lack this

feature. Having these phases in the development process helped in

developing and reviewing the requirements specification which is

strongly required in this research as a basis for the subsequent

development phases and ignored or sacrificed in many development

www.manaraa.com

102

approaches as discussed in chapter three. It also helped in producing

good design of the software system which is based upon the produced

requirements document. In addition, it facilitated the documentation of

the undertaken design decisions for subsequent phases and future

reference. Moreover, the prototyping approach, which is comprised

within the spiral model, added the advantages of the prototyping to the

development process. By that, it enabled the development team to

gain good understanding of the stakeholder’s requirements that haye

led to minimal requirements changes in the later stages of the

development. Furthermore, it helped in reducing the complexity of

understanding and developing the different constructs of the required

e-government application as it facilitated communicating this

understanding with the citizens and employees using tangible

prototypes instead of only discussing ideas.

In addition, the definition of objectives, alternatives, and constraints at

the beginning of each cycle within the spiral paid early attention to the

reuse option of some patterns and existing software components,

COTS, in the design and implementation of the Email Access instead

of reinventing the wheel. This saved the time required to develop the

www.manaraa.com

103

 reused parts from scratch and testing them to ensure their

correctness as the reused parts have been thoroughly tested before

being published. The definition of objectives also enabled considering

the required quality attributes, i.e. e-government characteristics of

excellence, in the development process. Thus useability, portability,

reliability, implementation, and maintainability NFRs have been

considered and supported in the different development phases as

discussed in previous chapters.

The adopted practices such as test-driven development, refactoring,

continuous subsystem integration, and the development of small

working releases during the development had positive effects on both

the system and the development process. The test-driven

development approach enabled effective unit testing of the developed

software system and quick programming feedback. This is because

the developed tests have been applied to small parts of the unit code

instead of the whole implemented unit, and re-applied regularly to

each small part of the functionality added to the code. Applying the

tests in this way facilitated finding and then fixing bugs in the unit code

as the found bugs were more likely to exist in the new code

www.manaraa.com

104

. Refactoring helped in producing loosely coupled and highly cohesive

design of the system’s components and classes. It enabled fixing

defects and amending parts of the design without changing the

interface of the components and hence without affecting other parts

of the design and implementation that are dependent upon the

modified parts. Developing small releases enabled having working

parts of the software system before the end of the project. This

enabled the client and the development team to use a working version

of the system that implements parts of the required functionality before

delivering the whole system. The developed releases also minimised

the risk of project failure as the most important functionalities have

been delivered within the earlier releases. Continuous subsystem

integration helped in early testing that the developed components of

the system correctly interface with each other to provide the expected

functionality. In this case, bugs were discovered and fixed earlier and

not accumulated until the last stages of the development process.

Also, the risk driven development of the spiral model had a positive

effect on the development process as it enabled early mitigation of

some of the main risks in the project.

www.manaraa.com

105

4.6.2. The Developed e-Government Application: Email Access

The conducted research aimed to develop an e-government

application using an object oriented design methodology. The

implemented software system, Email Access, has been designed

using UML language and developed as an OO software system in

which related classes have been clustered into components that

provide the defined functionality as specified in both the UC model

and system design. Both system classes and components have been

designed to be loosely coupled and highly cohesive in order to support

the maintainability NFR. This is because highly cohesive and loosely

coupled classes and components enables: (1) reusing them

independently from each other, (2) replacing one or more components

with others that provide the same interface, and (3) maintaining these

components with no effects, or minor effects in the worst cases, on

other system classes and components. In addition, new components

that provide new functionality can be added to the system and use its

components through their provided interfaces in order to extend its

provided functionality.

www.manaraa.com

106

Table 4.2 summarizes the characteristics of the proposed approach

compared to those of existing e-government design approaches.

Table 0.2: E-government Approaches Comparison .

 E-government Design Approach

 Bee
r et
al.

Marches
e

Kalloniati
s et al.

Tian
and
Tianfiel
d

Our
Approac
h

Comprehensiv
e

 Yes Yes

Integrated Yes Yes Yes

Ubiquitous Yes Yes Yes Yes

Usability Yes

Accessibility Yes Yes Yes Yes

Security Yes Yes

Privacy Yes Yes

Support
Re-engineering

 Yes Yes

Support
Evolution

 Yes Yes Yes

Interoperable Yes Yes Yes Yes

4.6.3. Research Questions and Objectives

This section discusses the extent to which the defined problem has

been solved by validating the research hypothesis and evaluating the

extent to which the research questions have been answered. In

addition, it discusses the extent to which the research aims and

objectives have been met.

www.manaraa.com

107

This research aimed at answering the following questions and used

their answers to validate the hypothesis addressed in section 1.2:

1. Can UC specifications fit the functionalities of e-

government applications? This has been answered by the

conducted research following the definition of the UC as a

“sequence of transactions performed by a system that yields

a measurable result of values for a particular actor” [19].

Based on this definition, the UCs have been successfully used

to model all the functions/services that the system is required

to provide to its end users. Moreover, their specification

defined the interactions between the end users (human

actors) and the developed software system. Furthermore, the

UCs have also been successfully used to model some

anticipated system functions/services which are supposed to

drive future system extensions.

2. Can the UC model of the required e-government

application drive the development of a functioning

system throughout the Software Development Life

Cycle? The conducted research proved that UC modelling

www.manaraa.com

108

 can lead the development of Email Access throughout the

development life cycle. During the initial stages of the

development, UCs have been used to elicit, specify, and agree

the systems functional requirements. The developed UC model

also helped in designing/developing the architectural view of the

system as early as possible during the development life cycle. It

helped in identifying and validating the main architectural

components of the system, their responsibilities, and the

relations among them. Moreover, it helped in making early

decisions of reusing COTS within the architecture. Furthermore,

the GUI of the developed system has been designed based on

the UC model as the different screens designed to provide the

services defined by the embodied UCs, and traceability with the

UC model has been used to validate these screens. The different

classes that build up the software system have been identified in

order to fulfil the functionality specified by the UCs. From the

UCs’ scenarios, the main classes and relations among them

have been identified. After producing the detailed system design,

www.manaraa.com

109

 the UC model has been used to validate this design and ensure

that it provides all the required functionality. During the

implementation phase, the system has been implemented based

on the produced design. In addition, the priorities of the UCs

helped in planning this phase as the most important functionality

has been implemented first. Test-driven development has been

adopted during the implementation phase. In this case, UCs

have been used to plan and implement these tests. Furthermore,

the UC model has been used as the basis for planning the

acceptance testing as the test cases have been designed to test

all the required functionality specified by the embodied UCs. As

specified with the test-driven development, UCs have been used

to identify the test data required to test the different functionalities

of the software system.

3. To what extent will the adoption of 12 characteristics of

excellence result in a successful design and

development of e-government applications? A high quality

e-government application resulted from the adoption of these

characteristics of excellence. This includes, usability,

www.manaraa.com

110

4. correctness, and extensibility. Further details are provided

later in this section in the context of discussing the

achievement of research aims and objectives.

In addition to answering the previous research questions, this

research aimed to achieve the following objectives:

1. Using UCs as a basis for developing Graphical User

Interface (GUI)-based e-government application. This has

been achieved as mentioned while answering the first

research question. UC model helped in driving the different

development phases of Email Access. In addition, it served

as the basis for designing the GUI of the developed Email

Access as each screen of the GUI has been designed to

provide one of the services specified by the UCs.

Consequently, the developed Email Access and its GUI have

been validated based on the system’s UC model.

2. Using the different Unified Modelling Language (UML)

diagrams and a collection of web-based technologies to

propose a new design and implementation methodology

www.manaraa.com

111

OO e-government applications. The conducted research and

development achieved this aim as it used the different UML

models to visualise and document the different artefacts of the

anticipated system including: functional requirements,

architectural design, and detailed logical design. The Email

Access has been designed as an OO system that is composed

of classes whose objects interact with each other through

massages to provide the required services. The system has

been designed and implemented to be highly maintainable as it

is built up of loosely coupled and highly cohesive classes that

are clustered into packages, which define highly cohesive and

loosely coupled subsystems/system components. These

packages are fitted in three-tier architecture: data, business, and

user tiers in which the different layers have relations with the

directly adjacent layers only. This loose coupling among the

different classes, components, and layers in addition to the high

cohesion are supposed to make the system highly maintainable

as these different constructs can be reused, maintained, or

replaced by others that provide the same functionality and

www.manaraa.com

112

interface without affecting, or with minor effects on, other

constructs. Usability of the system has been achieved by

addressing the main concerns of the system’s client and users

as detailed in the UC model, and then providing these needs by

the implemented system. Moreover, a simple GUI is provided by

the system to enable the end users to use the system throughout

GUI components such as: menus, lists, text fields, and buttons.

Furthermore, an online help is provided to the end users to assist

them while using the system. Consistency between the different

screens is considered in order to avoid confusing the users while

using the system and to enable quick and easy learning and use

of the system.

After answering the research questions and achieving the defined

aims and objectives, the research proved the correctness of the

proposed hypothesis as it proved that UC modelling can drive the

development of an OO e-government application that adopts the

internationally recognized characteristics of excellence. In addition,

the adoption of a software engineering approach helped in developing

the required system in a systematic way, managing this development

www.manaraa.com

113

 throughout its life cycle, addressing the concerns of the different

stakeholders, satisfying the functional requirements, conforming to the

NFRs, achieving good testing, and documenting the different aspects

of the system.

4.7. Summary and Conclusion

In this chapter, the application of the proposed object oriented

methodology to design and develop e-government applications is

demonstrated using an Email Access system. Three iterations were

needed to deliver an operational system.

The first iteration devoted to define the context and boundaries of the

Email Access system. Further analysis to system requirements and

building of system design were conducted in the second iteration. The

third iteration specialized in implementing and testing the Email-

Access system with minor revisiting to system requirements and

design to cope with the continuously changing requirements.

The risks surrounding the life cycle of this research project were also

discussed in this chapter along with their corresponding avoidance

and minimization plans. Risk monitoring and controlling activities were

explained in the framework of the adopted spiral software

development process.

www.manaraa.com

114

An evaluation of the proposed object oriented design methodology of

e-government applications is also provided. This evaluation showed

that the adoption of a use case based approach within the framework

of a spiral model was successful as it helped in developing an Email

Access that provides all the required functionality within the required

characteristics of excellence. In addition, an evaluation of the

outcomes of the different research phases, including the SDLC

phases, is provided and the achievements of each phase with respect

to the defined phase’s objectives have been highlighted. Moreover,

the developed software system has been evaluated. A discussion of

the extent to which the defined aims and objectives of this research

has been achieved, and the problem addressed and solved is

presented.

Finally, the next chapter summarises the main conclusions of this

research and concludes with suggestions for future work.

www.manaraa.com

115

Chapter five:

 Conclusion and future work

5.1. Summary and Conclusion

This thesis reports on a software engineering methodology followed

to develop an object-oriented e-government application. It describes

the use-case driven approach undertaken to elicit and document

requirements, design, implement, and test the developed Email

Access system. The different development phases with the main

outcomes of each phase are detailed in chapters three and four.

However, the research questions and main aims and objectives that

motivated this research and how they were tackled in this research

are described below.

This research investigated the appropriateness of using a software

engineering approach based on use-case modelling to develop an

object oriented e-government applications by attempting to answer

the following research questions:

1. Can UC specifications fit the functionalities of e-government

applications?

www.manaraa.com

116

2. Can the UC model of the required e-government application

drive the development of a functioning system throughout the

Software Development Life Cycle?

3. To what extent will the adoption of characteristics of

excellence result in a successful design and development of

e-government applications?

The outcomes of the conducted research proved that the UC

specification can fit the functionality of e-government applications.

And, e-government application’s UC model can drive all subsequent

development activities including design, implementation, and testing.

Moreover, it showed that adopting the object-oriented development

techniques positively affects some of the quality attributes of the

resulted system such as correctness, maintainability, and efficiency

as detailed in chapter four.

The main research aims and objectives have been achieved during

the research as UCs have been used as a basis for developing Email

Access, which is an OO e-government application that provides

simple GUI for its end users. In addition, the different UML diagrams

www.manaraa.com

117

have been utilised to model Email Access from different perspectives.

The main outcomes of this research that participated in answering the

underlying research questions, investigating the reality of the research

hypothesis, and achieving the research objectives could be

summarised as follows:

 The development of a UC model that specifies the functionality

of Email Access e-government application to drive its

development. This UC model addresses current powerful

functionalities of Email Access and can be extended to specify

any future functionality that might be acquired by the different

stakeholders.

 The development of new architectural style to present e-

government applications in a three-tier architecture. The

developed architecture within this research separates the

components that are concerned with data storage, form those

concerned with providing the business processes, and both

from the GUI component(s). This architecture is supposed to

enhance the maintainability and other NFRs, characteristics of

excellence, of the resulted system.

www.manaraa.com

118

 The proposal and application, Email Access system, of new

object oriented design and development methodology for e-

government applications.

Although the aims and objectives of this research were achieved, it is

believed that its outcomes can form a basis for future research

programs as outlined in the following section.

5.2. Future Work

This section provides some directions for future research programs to

extend this research and improve its outcomes.

First, the developed use case model was developed in such a general

way to be utilized in future extensions for Email Access system. In

addition, it constructs the basis for re-development and re-engineering

of Email Access to cope with emerging technologies.

The applicability and appropriateness of the proposed object oriented

methodology to develop e-government applications need further

assessment. Hence, the application of this proposed methodology on

another case study will be considered in prospective phases of this

research.

www.manaraa.com

119

Finally, the fitness of the proposed methodology in the design and

development of e-commerce applications needs to be investigated.

This is due to the high intersections between the characteristics of

excellence of both paradigms. Software metrics and measurement

[13,16,27,43] are to be employed in this investigation for better

management and informed evaluation. The main expected outcome

of this investigation is a generalized methodology for the design and

development of object oriented business applications.

www.manaraa.com

120

References

 [1] Al Hakeem. M, (2007). Saudi Telecom Sector to See Rapid
Growth [online]. Web page: Gulf News. Available from:
www.Gulfnews.com [Accessed 17/7/2007].

 [2] Al-Qadhi. M, (2003). UNDP Launches ICT Project in Yemen in
Regional E-government workshop Yemen p.13.

 [3] AME Info, (2007). DC World, Dubai E-Government Sign MoU on
Cooperation [online]. UAE: Available from:
http://www.ameinfo.com/113342.html [Accessed 15/7/2007].

 [4] APCICT, Incheon Republic of Korea, (2007). Planning,
Designing, Implementing, and Managing E-Government: Key
Issues, Case Studies, and Lessons Learned [online]. Republic of
Korea: UNITED NATIONS. Available from:
http://unapcict.org/event
/eGov_tp_2007/E_Govt%20Welcome%20Letter%20-
%20Director%20APCICT.pdf [Accessed 10/6/2007].

 [5] Apperly, H., Hoffman, R., Latchem, S., Maybank, B., Piper, D.,
Simons, C., and McGibbon, B., (2003). Service-And Component-
Based Development. Addison Wesley.

 [6] Arab Times, (2007). E-Governance Readiness in Gulf
Progressing: UN Report, ICDL Calls on Govts to Assess Needs
of IT Literacy [online]. Kuwait: Arab Times. Available from:
http://www.egovnews.org/?p=265 [Accessed 17/6/2007].

 [7] Arabian Business, (2007). Online Government Services
Launched in Abu Dhabi [online]. Web Page: Available from:
www.ArabianBusiness.com [Accessed 15/7/2007].

 [8] Backus, M., (2001). E-Governance and Developing Countries,
Introduction and Examples [online]. Research Report: Available
from: http://www.iicd.org/articles/ IICDnews.import1857
[Accessed 17/7/2007].

www.manaraa.com

121

 [9] Bass, L., Clements, P. and Kazman, R., (1998). Software
Architecture in Practice. Reading, Mass. ; Harlow : Addison-
Wesley.

[10] Beck, K., (2003). Test-Driven Development : by Example.
Boston : Addison-Wesley.

[11] Beer, D., Kunis, R., and Runger, G., (2006). A Component Based
Software Architecture for E-Government Applications in
Proceedings of First International Conference on Availability,
Reliability and Security (ARES'06) IEEE Computer Society,
pp.1004-1011 .

[12] Bennett, J., Microsoft CEO: Gulf's IT Market 'the Fastest Growing
Globally [online]. Arabian Business. Available from:
www.ArabianBusiness.com [Accessed 17/7/2007].

[13] Bennett, K. and Rajlich, V., (2000). Software Maintenance and
Evolution:a Roadmap in International Conference on Software
Engineering New York, NY, USA IEEE-CS : Computer Society ,
pp.73-87.

[14] Bittner, K. and Spence, I., (2003). Use Case Modeling. Boston ;
London : Addison-Wesley.

[15] Blaxter, L., Hughes, C., and M. Tight, (1996). How to Research.
Buckingham. Englang: Open University Press.

[16] Boehm, B., (1981). Software Engineering Economics.
Englewood Cliffs ; London : Prentice-Hall.

[17] Boehm, B., (1988). A Spiral Model of Software Development and
Enhancement ACM SIGSOFT Software Engineering Notes, 11
(4), pp. 14-24.

[18] Boersma, P., (2004). E-Government and User Centered Design
[online]. Peter Boersma. Available from:
http://www.peterboersma.com/blog/2004/09/e-government-and-
user-centered-design.html [Accessed 17/6/2007].

www.manaraa.com

122

[19] Booch, G., Rumbough, J., and Jacobson, I., (1999). The Unified
Modeling Language User Guide. Addison Wesley.

[20] Center for Technology in Government University at
Albany/SUNY, (1998). A Survey of System Development
Process Models. Technical Report. CTG.MFA -003.

[21] Collis, J. and Hussey, R., (2003). Business Research: A Practical
Guide for Undegraduate and Postgraduate Students. 2nd edition.
New York, US: Palgrave: Macmillan Businees, London.

[22] Creswell, J., (2003). Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches. USA: Sage.

[23] Department of Information Technology & Biotechnology, (1998).
E-Governance Strategy for Karnataka [online]. India:
Government of Karnataka. Available from:
http://www.bangaloreit.in/html/govtinformation/policies.htm
[Accessed 15/6/2007].

[24] El Emam, K. and Madhavji, N., (1995). Measuring the Success of
Requirements Engineering Processes in Proceedings of the 2nd
IEEE International Symposium on Requirements Engineering,
Mar 27-29 1995 York, Engl IEEE, Los Alamitos, CA, USA,
pp.204-211.

[25] Gammeri, S., Di Cerbo, F., and Scotto, M., (2005). Open Source
for E-Government Application Integration: a PHP-Based Solution
in Proceedings of the First International Conference on Open
Source Systems Genova pp.204-208.

[26] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., (1995).
Design Patterns : Elements of Reusable Object-Oriented
Software. Reading, Mass. : Addison-Wesley.

[27] Hughes, B., (2000). Practical Software Measurement. New York
; London : McGraw-Hill.

www.manaraa.com

123

[28] Infocomm Development Authority of Singapore , (2007).
Singapore E-Government [online]. Singapore: Ministry of
Finance. Available from: http://www.igov.gov.sg/ [Accessed
16/6/2007].

[29] Integrant Inc. (2003). Integrant Business Solutions Products
[online]. US: Available from:
http://www.integrantinc.com/products.aspx [Accessed
4/11/2004].

[30] Irani, Z., Elliman T., and Themistocleous M., (2005). Evaluating
Egovernment: Earning From the Experiences of Two UK Local
Authorities’ Information Systems Journal, 15 pp. 61-82.

[31] Jacobson, I., Booch, G. and Rumbaugh, J., (1999). The Unified
Software Development Process. Reading, Mass ; Harlow,
England : Addison Wesley Longman.

[32] Kent, B., (2000). Extreme Programming EXplained : Embrace
Change. Reading, MA : Addison-Wesley.

[33] Klazar, S., Nemec, J., Pribil , J., and Sumpikova, M., E-
Governance and Its Application in Area the of Programming
Public Expenditures: the Case for the Czech Republic and
Slovakia [online]. Czech Republic : The Grant Agency of the
Czech Republic Project. Available from:
http://unpan1.un.org/intradoc/groups/public/documents/NISPAce
e/ UNPAN020448.pdf [Accessed 16/8/2007].

[34] Kruchten, P., (1995). Architectural Blueprints - The 4 + 1 View
Model of Software Architecture IEEE Software, 12 (6), pp. 42-50.

[35] Kruchten, P., (2002). The Rational Unified Process : an
Introduction. Swedish edition. Boston, Mass. ; London : Addison-
Wesley.

[36] Level A Software, (2003). Software Life Cycle Models [online].
Level A Software. Available from:
http://www.levela.com/software_life_cycles_swdoc.htm
[Accessed 28/1/2004].

www.manaraa.com

124

[37] Maciaszek, L., Liong, B., and Bills, S., (2005). Practical Software
Engineering: A Case Study Approach. England: Addison
Wesley.

[38] Marchese, M., (2003). Service Oriented Architectures for
Supporting Environments in EGovernment Applications in
Proceedings of 2003 Symposium on Applications and the Internet
Workshops (SAINT'03 Workshops) Orlando, Florida, USA IEEE
Computer Society, p.106.

[39] NetSuite Inc, (2004). NETCRM [online]. USA: Available from:
http://www.netsuite .com /portal/home.shtml [Accessed
16/9/2004].

[40] Nuseibeh, B. and Easterbrook, S., (2000). Requirements
Engineering: a Roadmap in International Conference on
Software Engineering Poceedings of the Conference on The
Future of Software Engineering ACM Press New York, NY, USA
, pp.35-46.

[41] Pressman, R., (2001). Software Engineering: A Practitioner’s
Approach. 5th edition. India: McGraw-Hill.

[42] Priestly, M., (2000). Practical Object-Oriented Design With UML.
McGraw-Hill.

[43] Putnam, L. and Myers, W., (1992). Measures for Excellence :
Reliable Software on Time, Within Budget. Englewood Cliffs, N.J.
: Prentice Hall.

[44] Ramco Systems Ltd., Delivering EGovernance to Singapore:
Case Study EGovernance [online]. India: Ramco Systems Ltd.
Available from: http://www.ramco.ch/images/
download/Singapore%20Government%20Projects.pdf
[Accessed 16/6/2007].

[45] Riedl, R., (2002). DESIGN PRINCIPLES FOR E-GOVERNMENT
SERVICES. Institut für Informatik: Universität Zürich,
Winterthurerstrasse 190, CH-8057 Zürich.

www.manaraa.com

125

[46] Sferyx Internet Based Systems, (2001). Sferyx Tools Library
[online]. Italy: Available from:
http://www.sferyx.com/english/b2bcomponents/index.htm
[Accessed 9/92004].

[47] Sommerville, I., (2001). Software Engineering. 6th ed. Harlow,
England ; New York : Addison-Wesley.

[48] Sommerville, I. and Kotonya, G., (1998). Requirements
Engineering: Processes and Techniques. Chichester, New York:
J. Wiley.

[49] Sriramesh. K, (2006). E-Government in a Corporatist,
Communitarian Society: the Case of Singapore New Media &
Society, 8 (5), pp. 707-730.

[50] Strassman, M., (2001). Objectives for E-Government [online].
voxpolitics.com: voxpolitics.com. Available from:
http://www.voxpolitics.com/news/voxfpub/story265 .shtml
[Accessed 1/6/2007].

[51] Tian, J. and Tianfield, H., (2003). Object-Oriented Design of E-
Government System: A Case Study in Lecture Notes in Computer
Science. Germany: Springer Berlin / Heidelberg.

[52] Varatek Software, Inc., (2002). B-Liner 2002 [online]. Varatek
Software. Available from: http://www.varatek.com/index.html
[Accessed 1-6-2005].

[53] Wirfs-Brock, R., Wilkerson, B., and Wiener, L., (1990). Designing
Object-Oriented Software. Englewood Cliffs, N.J. : Prentice-Hall.

www.manaraa.com

126

[54] Zundorf, A., (2001). From Use Cases to Code-Rigorous Software
Development With UML in Proceedings of the 23rd International
Conference on Software Engineering. ICSE 2001, 12-19 May
2001 Toronto, Ont., Canada IEEE Comput. Soc, pp.711-712.

www.manaraa.com

127

Appendices

Appendix A: System Source Code Samples
A.1: Check Email

public class frm_CheckMails : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.HyperLink
HyperLink2;
 protected System.Web.UI.WebControls.HyperLink
HyperLink3;
 protected System.Web.UI.WebControls.Label Label1;
 protected System.Web.UI.WebControls.Label Label2;

 Data data_Layer=new Data();
 protected System.Web.UI.WebControls.DataGrid
Datagrid1;
 static OleDbConnection Ocon;
 static DataTable dTCheckMail,dtExistOutdieMails;
 protected System.Web.UI.WebControls.Label lblMails;
 protected System.Web.UI.WebControls.ListBox
lstPersonalInfo;
 protected System.Web.UI.WebControls.LinkButton
lnkAddPersonalFolder;
 static DataTable dtExistMailids;
 protected System.Web.UI.WebControls.Label lblMsg;
 protected System.Web.UI.WebControls.DropDownList
DropDownList1;
 protected System.Web.UI.WebControls.Button
btn_Delete;
 protected System.Web.UI.WebControls.LinkButton
lnkDeleteFolder;
 //String EmpID;
 static String Subjet,sendDatetime;
 static string EmpNo,str_EmpName;
 protected System.Web.UI.WebControls.Label lblname;
 protected System.Web.UI.WebControls.LinkButton
lnk_ChangePassword;

www.manaraa.com

128

 protected System.Web.UI.WebControls.LinkButton
lnkInbox;
 protected System.Web.UI.WebControls.ListBox
lstOfficialIbfo;
 protected System.Web.UI.WebControls.Label Label3;
 protected System.Web.UI.WebControls.Label
lblUsername;
 protected System.Web.UI.WebControls.Label lblCount;
 //DataTable dTCheckMail=new DataTable();
 Int16 int_MaillID;
 private void Page_Load(object sender,
System.EventArgs e)
 {

 try
 {
 if((string)Session["LoginUser"]=="" ||
Session["LoginUser"].ToString()==String.Empty)
 {

 Response.Redirect("default.aspx");
 }
 }
 catch (Exception ex)
 {
 Response.Redirect("default.aspx");
 }

 //Session["LoginUser"]="Emp005";
 String str_emp=Session["LoginUser"].ToString();
 EmpNo=Session["LoginUser"].ToString();
 lblMsg.Text="";
 if (!IsPostBack)
 {
 if (lstOfficialIbfo.Items.Count>0)
 {
 int int_Folders;
 for
(int_Folders=0;int_Folders<lstPersonalInfo.Items.Count;int_Folders+
+)

www.manaraa.com

129

 if
(lstOfficialIbfo.Items[int_Folders].Selected==true)
 {
 lstOfficialIbfo.Items[int_Folders].Selected=false;
 }
 }
 str_EmpName=GetUserName(EmpNo);

 data_Layer.Set_Str_Conn="Provider=Microsoft.Jet.Oledb.4.0;
 Data Source=" + Server.MapPath ("Data")+
@"\Email.mdb";
 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);
 string EmpId=Session["UserID"].ToString();
 lblUsername.Text=EmpId;

 lnkDeleteFolder.Attributes.Add("onclick", "javascript:return
validateListBox();");

 lstPersonalInfo.Items.Clear();
 DropDownList1.Items.Clear();
 GetUserFilders(EmpNo);
 // Put user code to initialize the page here
 Label3.Text="Inbox";
 Buil_Grid();
 }

 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET
Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);

www.manaraa.com

130

 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 private void InitializeComponent()
 {
 this.lnkInbox.Click += new
System.EventHandler(this.lnkInbox_Click);
 this.lnkAddPersonalFolder.Click +=
 new
System.EventHandler(this.lnkAddPersonalFolder_Click);
 this.lnkDeleteFolder.Click += new
System.EventHandler(this.lnkDeleteFolder_Click);
 this.lstPersonalInfo.SelectedIndexChanged +=
 new
System.EventHandler(this.lstPersonalInfo_SelectedIndexChanged);
 this.lnk_ChangePassword.Click += new
System.EventHandler(this.lnk_ChangePassword_Click);
 this.btn_Delete.Click += new
System.EventHandler(this.btn_Delete_Click);
 this.DropDownList1.SelectedIndexChanged +=
 new
System.EventHandler(this.DropDownList1_SelectedIndexChanged);
 this.Datagrid1.PageIndexChanged +=
 new
System.Web.UI.WebControls.DataGridPageChangedEventHandler(t
his.Datagrid1_PageIndexChanged);
 this.Load += new
System.EventHandler(this.Page_Load);

 }
 #endregion

 private void Buil_Grid()
 {
 try
 {

www.manaraa.com

131

 String str_getEmpName="SELECT s.mail_id as
[MailID],s.Emp_No as [Employe Number],
 s.Emp_Name as [Sender], s.Catg_Name as
[Manager Type], s.Subject as [Subject],
 s.Sent_Time as [Sent Time], sctr.Sector_Name as
[Employee Sector], dept.dept_Name as
 [Department Name], Sect.Section_Name as
[Employee Section],s.Priority as [Priority]";

 str_getEmpName +="FROM";
 str_getEmpName +="[select
sctr.Sector_Name , s.mail_id, s.Emp_No,
 s.Emp_Name,s.Catg_Name,s.Subject,
s.Sent_Time,s.Priority, dept.dept_Name";

 str_getEmpName +=" from";

 str_getEmpName +=" (select s.mail_id,
s.Emp_No, s.Emp_Name,s.Catg_Name,s.Subject,
 s.Sent_Time,s.Priority, dept.dept_Name";
 str_getEmpName +=" from ";
 str_getEmpName +=" (select emp.emp_no,
Emp.Emp_Name, Catg.Catg_Name,Mails.Subject,
 ms.mail_id, Mails.Sent_Time,Mails.Priority ";
 str_getEmpName +=" from tbl_EmpDetails
as Emp, Tbl_MilSent as Ms, Tbl_EmpCategory
 Catg, tbl_Mails Mails";
 str_getEmpName +=" where ";
 str_getEmpName +="
Emp.Emp_No=Ms.SentFrom_EmpID and MS.SentTo_EmpID='" +
EmpNo +"'
 and Ms.Folder=0";
 str_getEmpName +=" and Emp.Catg_Id =
Catg.Catg_Id";
 str_getEmpName +=" and Mails.Mail_Id=
Ms.Mail_Id) as s";
 str_getEmpName +=" left join";
 str_getEmpName +=" (select ed.Emp_No,
d.Dept_Name from tbl_departments d,
 Tbl_EmpDetails ed ";

www.manaraa.com

132

 str_getEmpName +=" where
d.Dept_ID=ed.Dept_ID) as dept";
 str_getEmpName +=" on";
 str_getEmpName +=" s.Emp_No =
dept.Emp_No) as s";
 str_getEmpName +=" left join ";
 str_getEmpName +=" (select n.Emp_No,
se.Sector_Name from tbl_sectors se,
 Tbl_EmpDetails n ";
 str_getEmpName +=" where
se.Sector_ID=n.Sector_ID) as sctr";
 str_getEmpName +=" on";
 str_getEmpName +=" s.Emp_No=
sctr.emp_No]. AS S LEFT JOIN [Select n.Emp_No,
 sec.Section_Name from tbl_sections sec,
Tbl_EmpDetails n ";
 str_getEmpName +=" where
sec.Section_ID=n.Section_ID]. AS Sect ON s.Emp_No =
 Sect.Emp_No";
 str_getEmpName +=" union select ' ' as
[MailId],'' as [Employe Number],'Out Sides'
 as [Sender],' ' as [Manager Type],'Suggestions' as
[Subject], Sent_Time AS [Sent
 Time],' ' as [Priority] ,' 'AS [Employee Sector], ' ' as
[Department Name], ' ' as
 [Employee Section] from Tbl_SuggestionSent
WHERE Sent_To_EmpId='"+ EmpNo + "'";

 OleDbDataAdapter daCheckMail=new
OleDbDataAdapter(str_getEmpName,Ocon);
 dTCheckMail=new DataTable();
 daCheckMail.Fill(dTCheckMail);
 lblMails.Text="";
 if (dTCheckMail.Rows.Count>0)
 {

www.manaraa.com

133

 lblMails.Text=(dTCheckMail.Rows.Count).ToString ();
 lblCount.Visible=true;

 lblCount.Text=(dTCheckMail.Rows.Count).ToString ();
 Datagrid1.DataSource=dTCheckMail;
 Datagrid1.DataBind();

 LinkButton lnkSubject=new
LinkButton();
 int m;

 for(m=0;m<Datagrid1.Items.Count;m++)
 {

lnkSubject=(LinkButton)Datagrid1.Items[m].Cells[4].FindControl("lnk
Sub");

 string
str_nbsp=Datagrid1.Items[m].Cells[5].Text;
 if
(Datagrid1.Items[m].Cells[5].Text.Trim()==" ")
 {

 lnkSubject.Text="None";
 String
SenderID,Toadd,Sub,senderName;

 SenderID=Datagrid1.Items[m].Cells[1].Text;

 senderName=Datagrid1.Items[m].Cells[2].Text;

 Toadd=Datagrid1.Items[m].Cells[5].Text;

 Sub=Datagrid1.Items[m].Cells[6].Text;

 lnkSubject.Attributes.Add("Onclick","javascript:mailopen('"+
SenderID +"', '"+ Toadd +"','"+ Sub +"','" + str_EmpName + "','" +
senderName + "');");

www.manaraa.com

134

 }
 else
 {

 lnkSubject.Text=Datagrid1.Items[m].Cells[5].Text;
 String
SenderID,Toadd,Sub,senderName;

 SenderID=Datagrid1.Items[m].Cells[1].Text;

 senderName=Datagrid1.Items[m].Cells[2].Text;

 Toadd=Datagrid1.Items[m].Cells[5].Text;

 Sub=Datagrid1.Items[m].Cells[6].Text;

 lnkSubject.Attributes.Add("Onclick","javascript:mailopen('"+
SenderID +"', '"+ Toadd +"','"+ Sub +"','" + str_EmpName + "','" +
senderName + "');");
 }
 }
 }
 else
 {
 DataTable dtMAilsnull = new
DataTable();

 dtMAilsnull.Columns.Add("Sender",typeof(String));
 dtMAilsnull.Columns.Add("Manager
Type",typeof(String));

 dtMAilsnull.Columns.Add("Subject",typeof(String));
 dtMAilsnull.Columns.Add("Sent
Time",typeof(String));
 dtMAilsnull.Columns.Add("Employee
Sector",typeof(String));
 dtMAilsnull.Columns.Add("Department
Name",typeof(String));
 dtMAilsnull.Columns.Add("Employee
Section",typeof(String));

www.manaraa.com

135

 dtMAilsnull.Columns.Add("Priority",typeof(String));
 Datagrid1.DataSource=dtMAilsnull;
 Datagrid1.DataBind();
 lblCount.Visible=false;
 }
 }
 catch (Exception ex)
 {
 if(lstPersonalInfo.SelectedIndex>=0)
 {
 if (Datagrid1.CurrentPageIndex - 1 >=
0)
 {
 Datagrid1.CurrentPageIndex =
Datagrid1.CurrentPageIndex - 1;
 }
 Buil_Grid();
 }

 else
 {
 if(lstPersonalInfo.SelectedIndex>=0)
 {
 if (Datagrid1.CurrentPageIndex -
1 >= 0)
 {

 Datagrid1.CurrentPageIndex = Datagrid1.CurrentPageIndex -
1;
 }
 Buil_Grid();
 }
 }
 }
 }

 public DataTable GetMailIds(String senderSub,String
sentsub)

www.manaraa.com

136

 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);
 string str_query="Select
Mail_ID,Sent_From_EmpID from Tbl_Mails where
Subject='"+senderSub+"' and Sent_Time='"+sentsub+"'";
 OleDbDataAdapter daMailID=new
OleDbDataAdapter(str_query,Ocon);
 DataTable dtMailid=new DataTable();
 daMailID.Fill(dtMailid);
 return dtMailid;
 }
 public void DeleteMails(DataTable dt)
 {
 int k;
 if(dt.Rows.Count>0)
 {
 for(k=0;k<dt.Rows.Count;k++)
 {
 string str_query="Delete from
Tbl_MilSent where Mail_ID="+dt.Rows[k].ItemArray[0]+" and
SentFrom_EmpID='"+dt.Rows[k].ItemArray[1]+"' and
SentTo_EmpID='"+dt.Rows[k].ItemArray[2]+"'";
 OleDbCommand DelMails=new
OleDbCommand(str_query,Ocon);
 Ocon.Open();
 DelMails.ExecuteNonQuery();
 Ocon.Close();
 }
 }

 }

 private void lnkDeleteFolder_Click(object sender,
System.EventArgs e)
 {

 if (lstPersonalInfo.SelectedIndex == -1)
 {

www.manaraa.com

137

 lblMsg.Text="Select Folder to Delete !!";
 return;
 }
 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);

 DeleteFolderMails(lstPersonalInfo.SelectedValue,EmpNo);
 OleDbCommand DelFoder=new
OleDbCommand("Delete from Tbl_Folder where Folder_Name='" +
lstPersonalInfo.SelectedItem.Text + "' and Emp_No='" + EmpNo +
"'",Ocon);
 Ocon.Open();
 DelFoder.ExecuteNonQuery();
 Ocon.Close();
 lblMsg.Visible=true;
 lblMsg.Text=lstPersonalInfo.SelectedItem.Text + "
Folder Deleted Successfully";
 GetUserFilders(EmpNo);
 DataTable dtMAilsnull = new DataTable();
 dtMAilsnull.Columns.Add("Sender",typeof(String));
 dtMAilsnull.Columns.Add("Manager
Type",typeof(String));
 dtMAilsnull.Columns.Add("Subject",typeof(String));
 dtMAilsnull.Columns.Add("Sent Time",typeof(String));
 dtMAilsnull.Columns.Add("Employee
Sector",typeof(String));
 dtMAilsnull.Columns.Add("Department
Name",typeof(String));
 dtMAilsnull.Columns.Add("Employee
Section",typeof(String));
 dtMAilsnull.Columns.Add("Priority",typeof(String));
 Datagrid1.DataSource=dtMAilsnull;
 Datagrid1.DataBind();

 }

 private void Datagrid1_PageIndexChanged(object
source,
System.Web.UI.WebControls.DataGridPageChangedEventArgs e)

www.manaraa.com

138

 try
 {

 Datagrid1.CurrentPageIndex=e.NewPageIndex;
 if (lstPersonalInfo.SelectedIndex>=0)
 {
 Buil_GridFolderMails();
 }
 else
 {
 Buil_Grid();
 }
 }
 catch (Exception ex)
 {

 }
 }
 public void GetUserFilders(String EmplID)
 {
 lstPersonalInfo.Items.Clear();
 DropDownList1.Items.Clear();
 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);
 OleDbDataAdapter daGetFolders=new
OleDbDataAdapter("Select distinct Folder_Name,Folder_Id from
tbl_Folder where Emp_No='"+EmpNo+"'",Ocon);
 DataTable dtFolders=new DataTable();
 daGetFolders.Fill(dtFolders);

 DropDownList1.DataSource=dtFolders;

 DropDownList1.DataTextField="Folder_Name";
 DropDownList1.DataValueField="Folder_Id";
 DropDownList1.DataBind();

 DropDownList1.Items.Add("Move to Folder");
 DropDownList1.SelectedIndex
 =DropDownList1.Items.Count - 1;

www.manaraa.com

139

 lstPersonalInfo.DataSource=dtFolders;

 lstPersonalInfo.DataTextField="Folder_Name";
 lstPersonalInfo.DataValueField="Folder_Id";
 lstPersonalInfo.DataBind();

 }

 private void lnkAddPersonalFolder_Click(object sender,
System.EventArgs e)
 {
 string sScript ="<script language='javascript'>" +

 "window.open('frm_AddFolder.aspx?','mywin','status=no,width
=400,height=360, menubar=no,
resizable=no,status=no,toolbar=no,location=no,center:Yes')" +
 "</script>";
 Response.Write(sScript);

 }

 public DataTable GetMailIDs(String subject , String
sentTime)
 {
 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);
 OleDbDataAdapter daGetMailIds=new
OleDbDataAdapter("Select Mail_ID from tbl_mails where
Subject='"+subject+"' and Sent_Time='"+sentTime+"'",Ocon);
 DataTable dtGetMailIds=new DataTable();
 daGetMailIds.Fill(dtGetMailIds);
 return dtGetMailIds;
 }
 public void mailsMovetoFolder(DataTable dtMailMove)
 {
 int mf;
 Ocon=new

www.manaraa.com

140

OleDbConnection(data_Layer.Set_Str_Conn);
 if (dtMailMove.Rows.Count>0)
 {
 for(mf=0;mf<dtMailMove.Rows.Count;mf++)
 {
 OleDbCommand cmdMoveMail=new
OleDbCommand("Insert into
Tbl_MailMoveFolder(Folder_Id,Emp_No,Mail_ID)
values("+dtMailMove.Rows[mf].ItemArray[1]+",'"+dtMailMove.Rows[
mf].ItemArray[0]+"',"+dtMailMove.Rows[mf].ItemArray[2]+")",Ocon);
 Ocon.Open();
 cmdMoveMail.ExecuteNonQuery();
 Ocon.Close();

 OleDbCommand UpdateMails=new
OleDbCommand("Update Tbl_MilSent set Folder=1 where
Mail_ID="+dtMailMove.Rows[mf].ItemArray[2]+" and
SentTo_EmpID='"+dtMailMove.Rows[mf].ItemArray[0]+"'",Ocon);
 Ocon.Open();
 UpdateMails.ExecuteNonQuery();
 Ocon.Close();

 }
 }
 }
 public int getFolderId(String folderName)
 {
 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);
 OleDbDataAdapter dagetFolderId=new
OleDbDataAdapter("Select Folder_Id from tbl_Folder where
Folder_Name='"+folderName+"'",Ocon);
 DataTable dtgetFolderId=new DataTable();
 dagetFolderId.Fill(dtgetFolderId);
 if (dtgetFolderId.Rows.Count>0)
 {

 return
(int)dtgetFolderId.Rows[0].ItemArray[0];

www.manaraa.com

141

 else
 {
 return 0;
 }

 }
 public String GetUserName(String employeeID)
 {
 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);
 OleDbDataAdapter daGetUserName=new
OleDbDataAdapter("Select Emp_Name from Tbl_EmpDetails where
Emp_No='" + EmpNo + "'",Ocon);
 DataTable dtGetUserName=new DataTable();
 daGetUserName.Fill(dtGetUserName);
 if (dtGetUserName.Rows.Count>0)
 {
 return
dtGetUserName.Rows[0].ItemArray[0].ToString();
 }
 else
 {
 return "";
 }
 }

 private void btn_Delete_Click(object sender,
System.EventArgs e)
 {

 int i,j;

 DataTable
dtDeleteOutsideMails=new DataTable();
 DataTable dtDelete=new
DataTable();

www.manaraa.com

142

 dtDeleteOutsideMails.Columns.Add("EmplId",typeof(String));

 dtDeleteOutsideMails.Columns.Add("Sentteime",typeof(string))
;
 //DataTable
dtExistMailids=new DataTable();

 dtDelete.Columns.Add("Mailid",typeof(int));

 dtDelete.Columns.Add("Sender",typeof(String));
 dtDelete.Columns.Add("Receiver",typeof(String));
 DataRow dr;
 CheckBox
chkMailDelete=new CheckBox();
 foreach(DataGridItem GridItem in Datagrid1.Items)
 {

 chkMailDelete=(CheckBox)GridItem.Cells[0].FindControl("chk
MailsDelete");

if (chkMailDelete.Checked == true)
 {

 Subjet=GridItem.Cells[5].Text;

if (Subjet=="Suggestions")
 {

if (chkMailDelete.Checked == true && Subjet=="Suggestions")
 {

 DataRow dr_delete;

 dtExistOutdieMails=new DataTable();

www.manaraa.com

143

 dtExistOutdieMails=GetOutsideMailIds(EmpNo.ToString(),GridI
tem.Cells[6].Text.ToString());

if (dtExistOutdieMails.Rows.Count>0)
 {

 for(j=0;j<dtExistOutdieMails.Rows.Count;j++)

 {

 dr_delete=dtDeleteOutsideMails.NewRow();

 dr_delete[0]=dtExistOutdieMails.Rows[j].ItemArray[0].ToString(
);

 dr_delete[1]=dtExistOutdieMails.Rows[j].ItemArray[1].ToString(
);

 dtDeleteOutsideMails.Rows.Add(dr_delete);

 }

 }

 }

 GetOutsideMailIds(dtDeleteOutsideMails);

 lblMsg.Text=dtDeleteOutsideMails.Rows.Count + "Deleted
Successfully";

 }

else

www.manaraa.com

144

 {

 sendDatetime=GridItem.Cells[6].Text;

 dtExistMailids=new DataTable();

 dtExistMailids=GetMailIds(Subjet.ToString(),sendDatetime.ToS
tring());

if (dtExistMailids.Rows.Count>0)
 {

 for(j=0;j<dtExistMailids.Rows.Count;j++)
 {

 dr=dtDelete.NewRow();

 dr[0]=dtExistMailids.Rows[j].ItemArray[0];

 dr[1]=dtExistMailids.Rows[j].ItemArray[1];
 dr[2]=EmpNo;

 dtDelete.Rows.Add(dr);
 }

 }
 }

 DeleteMails(dtDelete);

 lblMsg.Text=dtDelete.Rows.Count + "Deleted Successfully";

 }
 }

www.manaraa.com

145

 if(lstPersonalInfo.SelectedIndex>=0)
 {
 Buil_GridFolderMails();
 }
 else
 {
 Buil_Grid();
 }
 }
 public void GetOutsideMailIds(DataTable dt)
 {
 int k;
 if(dt.Rows.Count>0)
 {
 for(k=0;k<dt.Rows.Count;k++)
 {
 string str_query="Delete from
Tbl_SuggestionSent where
Sent_To_EmpId='"+dt.Rows[k].ItemArray[0]+"' and
Sent_Time='"+dt.Rows[k].ItemArray[1]+"'";
 OleDbCommand DelMails=new
OleDbCommand(str_query,Ocon);
 Ocon.Open();
 DelMails.ExecuteNonQuery();
 Ocon.Close();
 }
 }

 }
 public DataTable GetOutsideMailIds(String User,String
sentTime)
 {
 Ocon=new
OleDbConnection(data_Layer.Set_Str_Conn);
 string str_query="Select
Sent_To_EmpId,Sent_Time from Tbl_SuggestionSent where
Sent_To_EmpId='"+User+"' and Sent_Time='"+sentTime+"'";
 OleDbDataAdapter daMailID=new
OleDbDataAdapter(str_query,Ocon);

www.manaraa.com

146

 DataTable dtMailid=new DataTable();
 daMailID.Fill(dtMailid);
 return dtMailid;
 }

 private void
DropDownList1_SelectedIndexChanged(object sender,
System.EventArgs e)
 {

 int mailFold;
 string folderId,MailID;
 DataTable dtMailMoveFolder = new
DataTable();
 dtMailMoveFolder.Columns.Add("FolderId",
typeof(String));
 dtMailMoveFolder.Columns.Add("EmpID",
typeof(String));
 dtMailMoveFolder.Columns.Add("MailID",
typeof(int));
 DataRow drMfolder;
 CheckBox MailMove = new CheckBox();

 if
(DropDownList1.SelectedItem.Text.ToString()!="Move to Folder")
 {
 foreach (DataGridItem griditem in
Datagrid1.Items)
 {
 MailMove =
(CheckBox)griditem.Cells[0].FindControl("chkMailsDelete");

 if (MailMove.Checked == true)
 {

 String str_subject,
str_sentTime;
 str_subject =

www.manaraa.com

147

griditem.Cells[5].Text;
 str_sentTime =
griditem.Cells[6].Text;

 int_MaillID=Convert.ToInt16(griditem.Cells[11].Text);
 DataTable dtMailIds = new
DataTable();
 dtMailIds =
GetMailIDs(str_subject, str_sentTime);
 folderId =
getFolderId(DropDownList1.SelectedItem.Text).ToString();

 drMfolder =
dtMailMoveFolder.NewRow();
 drMfolder[0] =
EmpNo;
 drMfolder[1] =
folderId;
 drMfolder[2] = int_MaillID;

 MailID=Convert.ToString(int_MaillID);

 dtMailMoveFolder.Rows.Add(drMfolder);

 }
 }
 }

 int int_lst=lstPersonalInfo.SelectedIndex;
 if (lstPersonalInfo.SelectedIndex==-1)
 {
 int Int_Folder;

 for(Int_Folder=0;Int_Folder<dtMailMoveFolder.Rows.Count;Int
_Folder++)
 {

if

www.manaraa.com

148

(GetFolderMailids(Convert.ToInt16(DropDownList1.SelectedValue),d
tMailMoveFolder.Rows[Int_Folder].ItemArray[0].ToString(),Convert.T
oInt16(dtMailMoveFolder.Rows[Int_Folder].ItemArray[2]))==false)
 {

 mailsMovetoFolder(dtMailMoveFolder);
 lblMsg.Visible = true;
 lblMsg.Text =
dtMailMoveFolder.Rows.Count + " Moved to " +
DropDownList1.SelectedItem.Text + " Folder";

 Buil_Grid();
 }

else
 {

if
(UpdateFolder(Convert.ToInt16(DropDownList1.SelectedValue),dtM
ailMoveFolder.Rows[Int_Folder].ItemArray[0].ToString(),Convert.ToI
nt16(dtMailMoveFolder.Rows[Int_Folder].ItemArray[2]))==true)
 {

 }
 }
 }
 }

else
 {

 /****************Close****************/

if
(lstPersonalInfo.SelectedItem.Text==DropDownList1.SelectedItem.T
ext)
 {
 lblMsg.Visible=true;
 lblMsg.Text="Select another Folder";
 return;

www.manaraa.com

149

 }
 int Int_Folder;

 for(Int_Folder=0;Int_Folder<dtMailMoveFolder.Rows.Count;Int
_Folder++)
 {

if
(GetFolderMailids(Convert.ToInt16(lstPersonalInfo.SelectedValue),dt
MailMoveFolder.Rows[Int_Folder].ItemArray[0].ToString(),Convert.T
oInt16(dtMailMoveFolder.Rows[Int_Folder].ItemArray[2]))==false)
 {

 mailsMovetoFolder(dtMailMoveFolder);
 lblMsg.Visible = true;
 lblMsg.Text =
dtMailMoveFolder.Rows.Count + " Moved to " +
DropDownList1.SelectedItem.Text + " Folder";
 GetUserFilders(EmpNo);
 Buil_Grid();
 }

else
 {

if
(UpdateFolder(Convert.ToInt16(DropDownList1.SelectedValue),dtM
ailMoveFolder.Rows[Int_Folder].ItemArray[0].ToString(),Convert.ToI
nt16(dtMailMoveFolder.Rows[Int_Folder].ItemArray[2]))==true)
 {
 lblMsg.Visible = true;
 lblMsg.Text =
dtMailMoveFolder.Rows.Count + " Moved to " +
DropDownList1.SelectedItem.Text + " Folder from" +
lstPersonalInfo.SelectedItem.Text;

 Buil_GridFolderMails();
 }
 }

www.manaraa.com

150

 }
 DropDownList1.SelectedIndex
 =DropDownList1.Items.Count - 1;

 }

 private void lnk_ChangePassword_Click(object sender,
System.EventArgs e)
 {
 Server.Transfer("frm_ChangePassword.aspx");

 }

 private void Buil_GridFolderMails()
 {
 try
 {
 String str_getEmpName="Select
Rslt.SentFrom_EmpID as [Employe Number] ,Rslt.Emp_Name as
[Sender], Rslt.Catg_Name as [Manager Type],Rslt.Subject as
[Subject],Rslt.Sent_Time as [Sent Time], Rslt.Sector_Name as
[Employee Sector],Rslt.Dept_Name as [Department
Name],Scns.Section_Name as [Employee Section],rslt.Priority as
[Priority],Rslt.Mail_Id as [MailID]";

 str_getEmpName +=" from";

 str_getEmpName +=" (Select
Rslt.SentFrom_EmpID , Rslt.Mail_Id,
Rslt.Subject,Rslt.Sent_Time,rslt.Priority,Rslt.Emp_Name,
Rslt.Section_Id,Rslt.Catg_Name,Sctr.Sector_Name,Dept.Dept_Nam
e";
 str_getEmpName +=" from ";
 str_getEmpName +=" (Select
Rslt.SentFrom_EmpID ,Rslt.Mail_Id,

www.manaraa.com

151

 Rslt.Subject,Rslt.Sent_Time,rslt.Priority,Rslt.Emp_Name,
Rslt.Dept_Id,Rslt.Section_Id,Rslt.Catg_Name,Sctr.Sector_Name";

 str_getEmpName +=" from";

 str_getEmpName +=" (Select
Rslt.SentFrom_EmpID ,Rslt.Mail_Id,
Rslt.Subject,Rslt.Sent_Time,rslt.Priority,Rslt.Emp_Name,
Rslt.Sector_Id,Rslt.Dept_Id,Rslt.Section_Id,Catg.Catg_Name";
 str_getEmpName +=" from";

 str_getEmpName +=" (Select
Rslt.SentFrom_EmpID , Rslt.Mail_Id,
Rslt.Subject,Rslt.Sent_Time,rslt.Priority,Emp.Emp_Name,
Emp.Catg_Id,Emp.Sector_Id,Emp.Dept_Id,emp.Section_Id";
 str_getEmpName +=" from";

 str_getEmpName +=" (Select
Rslt.SentFrom_EmpID, Rslt.Mail_Id,
Rslt.Subject,Rslt.Sent_Time,rslt.Priority ";
 str_getEmpName +=" from";
 str_getEmpName +=" (Select
Sent.SentFrom_EmpID, Sent.SentTo_EmpID,MInfo.Mail_Id,
MInfo.Subject, MInfo.Sent_Time,MInfo.Priority ";
 str_getEmpName +=" from tbl_MilSent as
Sent";

 str_getEmpName +=" right join";

 str_getEmpName +=" (select Mails.Mail_Id,
Mails.Subject, Mails.Sent_Time,Mails.Priority";
 str_getEmpName +=" from ";
 str_getEmpName +=" tbl_Mails Mails";
 str_getEmpName +=" where Mail_Id in";
 str_getEmpName +=" (select Mail_Id from
Tbl_MailMoveFolder where Folder_Id=" +
lstPersonalInfo.SelectedValue + "))";

 str_getEmpName +=" as Minfo";

www.manaraa.com

152

 str_getEmpName +=" on ";

 str_getEmpName +=" Sent.Mail_ID=
Minfo.Mail_Id)";
 str_getEmpName +=" as Rslt";

 str_getEmpName +=" where
Rslt.SentTo_EmpID='" + EmpNo + "') as rslt ";

 str_getEmpName +=" left join";

 str_getEmpName +=" tbl_EmpDetails as
Emp";
 str_getEmpName +=" on ";
 str_getEmpName +=" Rslt.SentFrom_EmpID
= Emp.Emp_NO) as rslt";

 str_getEmpName +=" left join";

 str_getEmpName +=" Tbl_EmpCategory as
Catg";

 str_getEmpName +=" on ";

 str_getEmpName +=" rslt.Catg_ID=
Catg.Catg_Id";
 str_getEmpName +=") as Rslt";

 str_getEmpName +=" left join";
 str_getEmpName +=" Tbl_Sectors as Sctr";
 str_getEmpName +=" on";

 str_getEmpName +=" Rslt.Sector_Id =
Sctr.Sector_ID) as Rslt left join Tbl_Departments as Dept on
Rslt.Dept_Id = Dept.Dept_ID) as Rslt left join Tbl_Sections as scns
on Rslt.Section_Id =Scns.Section_Id";

 OleDbDataAdapter daCheckMail=new
OleDbDataAdapter(str_getEmpName,Ocon);

www.manaraa.com

153

 dTCheckMail=new DataTable();
 daCheckMail.Fill(dTCheckMail);

 if (dTCheckMail.Rows.Count>0)
 {
lblCount.Visible=true;

 lblCount.Text=dTCheckMail.Rows.Count.ToString();
 Datagrid1.Visible=true;
 Datagrid1.DataSource=dTCheckMail;
 Datagrid1.DataBind();

 LinkButton lnkSubject=new LinkButton();
 int m;
 for(m=0;m<Datagrid1.Items.Count;m++)
 {

 lnkSubject=(LinkButton)Datagrid1.Items[m].Cells[4].FindContro
l("lnkSub");

string str_nbsp=Datagrid1.Items[m].Cells[5].Text;

if (Datagrid1.Items[m].Cells[5].Text.Trim()==" ")
 {

 lnkSubject.Text="None";
 String
SenderID,Toadd,Sub,senderName;

 SenderID=Datagrid1.Items[m].Cells[1].Text;

 senderName=Datagrid1.Items[m].Cells[2].Text;

 Toadd=Datagrid1.Items[m].Cells[5].Text;

 Sub=Datagrid1.Items[m].Cells[6].Text;

www.manaraa.com

154

 lnkSubject.Attributes.Add("Onclick","javascript:mailopen('"+
SenderID +"', '"+ Toadd +"','"+ Sub +"','" + str_EmpName + "','" +
senderName + "');");

 }

else
 {

 lnkSubject.Text=Datagrid1.Items[m].Cells[5].Text;
 String
SenderID,Toadd,Sub,senderName;

 SenderID=Datagrid1.Items[m].Cells[1].Text;

 senderName=Datagrid1.Items[m].Cells[2].Text;

 Toadd=Datagrid1.Items[m].Cells[5].Text;

 Sub=Datagrid1.Items[m].Cells[6].Text;

 lnkSubject.Attributes.Add("Onclick","javascript:mailopen('"+
SenderID +"', '"+ Toadd +"','"+ Sub +"','" + str_EmpName + "','" +
senderName + "');");
 }
 }
 }

else
 {
 DataTable dtMAilsnull = new DataTable();

 dtMAilsnull.Columns.Add("Sender",typeof(String));
 dtMAilsnull.Columns.Add("Manager
Type",typeof(String));

 dtMAilsnull.Columns.Add("Subject",typeof(String));

www.manaraa.com

155

 dtMAilsnull.Columns.Add("Sent
Time",typeof(String));
 dtMAilsnull.Columns.Add("Employee
Sector",typeof(String));
 dtMAilsnull.Columns.Add("Department
Name",typeof(String));
 dtMAilsnull.Columns.Add("Employee
Section",typeof(String));

 dtMAilsnull.Columns.Add("Priority",typeof(String));
 Datagrid1.DataSource=dtMAilsnull;
 Datagrid1.DataBind();
 lblCount.Visible=false;
 }
 }
 catch (Exception ex)
 {
 if(lstPersonalInfo.SelectedIndex>=0)
 {
 if (Datagrid1.CurrentPageIndex - 1 >=
0)
 {
 Datagrid1.CurrentPageIndex =
Datagrid1.CurrentPageIndex - 1;
 }
 Buil_GridFolderMails();
 }

else
 {

if (Datagrid1.CurrentPageIndex - 1 >= 0)
 {

 Datagrid1.CurrentPageIndex = Datagrid1.CurrentPageIndex -
1;
 }
 Buil_Grid();
 }

www.manaraa.com

156

 }
 }
 public bool ExistMailCheck(String FolderID,int Mailid)
 {
 OleDbCommand cmdExistMailCheck=new
OleDbCommand("Select * from Tbl_MailMoveFolder where
Folder_Id='" + FolderID + "' and Mail_ID='" + Mailid + "'",Ocon);
 Ocon.Open();
 if (cmdExistMailCheck.ExecuteNonQuery()>0)
 {
 return true;
 }
 else
 {
 return false;
 }

 Ocon.Close();
 }

 private void lnkInbox_Click(object sender,
System.EventArgs e)
 {
 lstPersonalInfo.Items.Clear();
 GetUserFilders(EmpNo);
 Label3.Text="Inbox";

 Buil_Grid();

 }
 public bool GetFolderMailids(int folderID,String emplId,int
mailId)
 {
 DataTable dt=new DataTable();
 dt=data_Layer.Get_Result ("Select * from
Tbl_MailMoveFolder where Folder_Id=" + folderID + " and
Emp_No='" + emplId + "' and Mail_ID="+mailId+"",Ocon);

www.manaraa.com

157

if (dt.Rows.Count >0)
 {

return true;
 }

else
 {

return false;
 }

 }
 public bool UpdateFolder(int folderID,String emplId,int
mailId)
 {
 OleDbCommand cmdUpdateFolder=new
OleDbCommand("Update Tbl_MailMoveFolder set
Folder_Id="+folderID+" where Emp_No='" + emplId + "' and
Mail_ID="+mailId+"",Ocon);
 Ocon.Open();
 cmdUpdateFolder.ExecuteNonQuery();
 Ocon.Close();
 return true;
 }

 public void DeleteFolderMails(String FolderId,String
EmplID)
 {

 OleDbDataAdapter da_SelectFolderMails=new
OleDbDataAdapter("select Mail_ID from tbl_mailMoveFolder where
Folder_Id="+FolderId+" and Emp_No='" + EmplID+"'",Ocon);
 DataTable dt_SelectFolderMails=new DataTable();
 da_SelectFolderMails.Fill(dt_SelectFolderMails);
 int int_DelMail;
 if(dt_SelectFolderMails.Rows.Count>0)

www.manaraa.com

158

 {

 for(int_DelMail=0;int_DelMail<dt_SelectFolderMails.Rows.Cou
nt;int_DelMail++)
 {
 OleDbCommand cmd_DeleteFolderMails=new
OleDbCommand("Delete from Tbl_MailMoveFolder where
Mail_ID="+dt_SelectFolderMails.Rows[int_DelMail].ItemArray[0]+"
and Emp_No='"+EmplID+"'",Ocon);
 Ocon.Open();

 cmd_DeleteFolderMails.ExecuteNonQuery();
 Ocon.Close();
 }
 }
 }

 private void
lstPersonalInfo_SelectedIndexChanged(object sender,
System.EventArgs e)
 {
 Label3.Text=lstPersonalInfo.SelectedItem.Text;

 Datagrid1.DataSource=null;
 Datagrid1.DataBind();
 //lstPersonalInfo.SelectedItem.Text=null;
 Buil_GridFolderMails();
 }

 public int GetMailsCount(int FolderID,String EmpID)
 {
 OleDbDataAdapter daGetMailsCount=new
OleDbDataAdapter("Select count(Mail_ID) from tbl_MailMoveFolder
where Folder_Id="+FolderID+" and Emp_No='" + EmpID+ "'",Ocon);
 DataTable dtGetMailsCount=new DataTable();
 daGetMailsCount.Fill(dtGetMailsCount);
 if (dtGetMailsCount.Rows.Count>0)

www.manaraa.com

159

return Convert.ToInt16(dtGetMailsCount.Rows[0].ItemArray[0]);
 }

else

return 0;
 }

 }

A.2: Default

public class _default : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.LinkButton
lnk_User;
 protected System.Web.UI.WebControls.LinkButton
lnk_Admin;
 protected System.Web.UI.WebControls.LinkButton
LinkButton4;
 TextBox User =new TextBox();
 private void Page_Load(object sender,
System.EventArgs e)
 {
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET
Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

www.manaraa.com

160

 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.lnk_User.Click += new
System.EventHandler(this.lnk_User_Click);
 this.lnk_Admin.Click += new
System.EventHandler(this.lnk_Admin_Click);
 this.LinkButton4.Click += new
System.EventHandler(this.LinkButton4_Click);
 this.Load += new
System.EventHandler(this.Page_Load);

 }
 #endregion

 private void lnk_User_Click(object sender,
System.EventArgs e)
 {
 User.Text= "user";
 Response.Redirect("frm_Login.aspx?LoginType="
+ User.Text);
 }

 private void lnk_Admin_Click(object sender,
System.EventArgs e)
 {
 User.Text= "Admin";
 Response.Redirect("frm_Login.aspx?LoginType="
+ User.Text);
 }

 private void LinkButton4_Click(object sender,
System.EventArgs e)
 {
 Response.Redirect("Suggesstion.aspx");
 } }

www.manaraa.com

161

A.3: Employees

public class frm_Employees : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label Label6;
 protected System.Web.UI.WebControls.Label Label1;
 protected System.Web.UI.WebControls.Label Label2;
 protected System.Web.UI.WebControls.Label Label8;
 protected System.Web.UI.WebControls.DropDownList
ddl_Section;
 protected System.Web.UI.WebControls.Button
btn_Submit;
 protected System.Web.UI.WebControls.Button
btn_Cancel;
 protected System.Web.UI.WebControls.Label lbl_Save;
 protected System.Web.UI.WebControls.Label Label7;
 protected System.Web.UI.WebControls.TextBox
txt_Search;
 protected System.Web.UI.WebControls.DropDownList
ddl_Emp;
 protected System.Web.UI.WebControls.DropDownList
ddl_Sector;
 protected System.Web.UI.WebControls.DropDownList
ddl_Dept;
 protected System.Web.UI.WebControls.Label Label3;
 protected System.Web.UI.WebControls.DataGrid
dg_Details;

 /* Global variables */
 DataTable Datatable = new DataTable ();
 DataSet Dataset=new DataSet();
 static OleDbConnection _Connection;
 string str_sector=string.Empty;
 protected System.Web.UI.WebControls.Button
btn_Search;
 Data data_Layer= new Data();
 protected
System.Web.UI.WebControls.RequiredFieldValidator
RequiredFieldValidator1;

www.manaraa.com

162

 protected
System.Web.UI.WebControls.RequiredFieldValidator
RequiredFieldValidator2;
 protected
System.Web.UI.WebControls.RequiredFieldValidator
RequiredFieldValidator3;
 protected
System.Web.UI.WebControls.RequiredFieldValidator
RequiredFieldValidator4;
 protected
System.Web.UI.WebControls.ValidationSummary
ValidationSummary1;
 OleDbCommand _Command;
 OleDbDataReader _DataReader;

 private void Page_Load(object sender,
System.EventArgs e)
 {
 if (Session["Admin"].ToString()=="")
 {
 Server.Transfer("default.aspx");
 }

 string StrAdmin=Session["Admin"].ToString();
 // Put user code to initialize the page here
 if(!IsPostBack)
 {

 data_Layer.Set_Str_Conn="provider=Microsoft.Jet.OLEDB.4.0
;data source="+Server.MapPath("Data")+ @"\EMail.mdb";
 Fill_Grid();
 Fill_Employee();
 Fill_Sectors();
 Fill_Departments();
 Fill_Sections();
 }
 }
 public void Fill_Employee()

www.manaraa.com

163

 OleDbDataAdapter _Adapter=new
OleDbDataAdapter("SELECT Emp_Name from Tbl_EmpDetails
where Sector_Id=0 and Dept_Id=0 and Section_Id=0 and Catg_Id=6
order by Emp_Name",_Connection);
 _Adapter.Fill(Dataset,"emp");
 ddl_Emp.DataSource=Dataset.Tables["emp"];
 ddl_Emp.DataTextField="Emp_Name";
 ddl_Emp.DataBind();
 }
 public void Fill_Sectors()
 {
 OleDbDataAdapter _Adapter1=new
OleDbDataAdapter("SELECT Sector_Name,Sector_Id from
Tbl_Sectors order by Sector_Name",_Connection);
 _Adapter1.Fill(Dataset,"Sector");
 ddl_Sector.DataSource=Dataset.Tables["Sector"];
 ddl_Sector.DataTextField="Sector_Name";
 ddl_Sector.DataValueField="Sector_Id";
 ddl_Sector.DataBind();
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET
Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 private void InitializeComponent()
 {
 this.ddl_Sector.SelectedIndexChanged += new
System.EventHandler(this.ddl_Sector_SelectedIndexChanged);
 this.ddl_Dept.SelectedIndexChanged += new
System.EventHandler(this.ddl_Dept_SelectedIndexChanged);

www.manaraa.com

164

 this.btn_Submit.Click += new
System.EventHandler(this.btn_Submit_Click);
 this.btn_Cancel.Click += new
System.EventHandler(this.btn_Cancel_Click);
 this.btn_Search.Click += new
System.EventHandler(this.btn_Search_Click);
 this.dg_Details.PageIndexChanged += new
System.Web.UI.WebControls.DataGridPageChangedEventHandler(t
his.dg_Details_PageIndexChanged);
 this.dg_Details.EditCommand += new
System.Web.UI.WebControls.DataGridCommandEventHandler(this.
dg_Details_EditCommand);
 this.dg_Details.DeleteCommand += new
System.Web.UI.WebControls.DataGridCommandEventHandler(this.
dg_Details_DeleteCommand);
 this.dg_Details.SelectedIndexChanged += new
System.EventHandler(this.dg_Details_SelectedIndexChanged);
 this.Load += new
System.EventHandler(this.Page_Load);

 }
 #endregion

 public void Fill_Departments()
 {
 if(ddl_Sector.SelectedValue=="")
 {
 return;
 }
 OleDbDataAdapter _Adapter2=new
OleDbDataAdapter("SELECT Dept_Name,Dept_Id from
Tbl_Departments where Sector_Id="+ddl_Sector.SelectedValue+"
order by Dept_Name",_Connection);
 _Adapter2.Fill(Dataset,"dept");

 ddl_Dept.DataSource=Dataset.Tables["dept"];
 ddl_Dept.DataTextField="Dept_Name";
 ddl_Dept.DataValueField="Dept_Id";
 ddl_Dept.DataBind();

www.manaraa.com

165

 }

 public void Fill_Sections()
 {
 if(ddl_Dept.SelectedValue=="")
 {
 return;
 }
 OleDbDataAdapter _Adapter3=new
OleDbDataAdapter("SELECT Section_Name,Section_Id from
Tbl_Sections where Dept_Id="+ddl_Dept.SelectedValue+" order by
Section_Name",_Connection);
 _Adapter3.Fill(Dataset,"Section");

 ddl_Section.DataSource=Dataset.Tables["Section"];
 ddl_Section.DataTextField="Section_Name";
 ddl_Section.DataValueField="Section_Id";
 ddl_Section.DataBind();
 }
 public void Fill_Grid()
 {
 try
 {
 _Connection=new
OleDbConnection(data_Layer.Set_Str_Conn);
 OleDbDataAdapter _Adapter4=new
OleDbDataAdapter("SELECT sc.Sector_Name, dpt.Dept_Name,
se.Section_Name, ed.Emp_Name,ed.Emp_No FROM Tbl_Sectors
AS sc, Tbl_EmpDetails AS ed, Tbl_Departments AS dpt,
Tbl_Sections AS se WHERE sc.Sector_Id=ed.Sector_Id and
dpt.Dept_Id=ed.Dept_Id and se.Section_Id=ed.Section_Id and
ed.Catg_Id=6",_Connection);
 _Adapter4.Fill(Datatable);
 if(Datatable.Rows.Count>0)
 {
 dg_Details.DataSource=Datatable;
 dg_Details.DataBind();
 }

www.manaraa.com

166

else
 {
 DataTable dt=new DataTable();
 dt.Columns.Add("Employee Name");
 dt.Columns.Add("Sector Name");
 dt.Columns.Add("Dept Name");
 dt.Columns.Add("Section Name");
 dg_Details.DataSource=dt;
 dg_Details.DataBind();
 }
 }

catch(Exception ex)
 {
 lbl_Save.Text=ex.Message;
 }
 }

private void btn_Search_Click(object sender, System.EventArgs e)
 {
 try
 {
 if(txt_Search.Text.IndexOf("'",0)<0)
 {
 lbl_Save.Text="";
 OleDbDataAdapter _Adapter5=new
OleDbDataAdapter("SELECT sc.Sector_Name, dpt.Dept_Name,
se.Section_Name, ed.Emp_Name,ed.Emp_No FROM Tbl_Sectors
AS sc, Tbl_EmpDetails AS ed, Tbl_Departments AS dpt,
Tbl_Sections AS se WHERE sc.Sector_Id=ed.Sector_Id and
dpt.Dept_Id=ed.Dept_Id and se.Section_Id=ed.Section_Id and
ed.Catg_Id=6 and ed.Emp_Name like
'"+txt_Search.Text+"%'",_Connection);
 _Adapter5.Fill(Datatable);
 dg_Details.DataSource=Datatable;
 dg_Details.DataBind();
 }

www.manaraa.com

167

else
 {
 lbl_Save.Text="Enter valid data to
search";
 lbl_Save.ForeColor=Color.Red;
 }
 }

catch(Exception ex)
 {

if(dg_Details.CurrentPageIndex-1>0)
 {

 dg_Details.CurrentPageIndex=dg_Details.CurrentPageIndex-
1;
 }
 OleDbDataAdapter _Adapter5=new
OleDbDataAdapter("SELECT sc.Sector_Name, dpt.Dept_Name,
se.Section_Name, ed.Emp_Name,ed.Emp_No FROM Tbl_Sectors
AS sc, Tbl_EmpDetails AS ed, Tbl_Departments AS dpt,
Tbl_Sections AS se WHERE sc.Sector_Id=ed.Sector_Id and
dpt.Dept_Id=ed.Dept_Id and se.Section_Id=ed.Section_Id and
ed.Catg_Id=6 and ed.Emp_Name like
'"+txt_Search.Text+"%'",_Connection);
 _Adapter5.Fill(Datatable);
 dg_Details.DataSource=Datatable;
 dg_Details.DataBind();
 }
 }

private void ddl_Sector_SelectedIndexChanged(object sender,
System.EventArgs e)
 {
 OleDbDataAdapter _Adapter2=new
OleDbDataAdapter("SELECT Dept_Name,Dept_Id from
Tbl_Departments where Sector_Id="+ddl_Sector.SelectedValue+"
order by Dept_Name",_Connection);

www.manaraa.com

168

 _Adapter2.Fill(Dataset,"dept");
 ddl_Dept.DataSource=Dataset.Tables["dept"];
 ddl_Dept.DataTextField="Dept_Name";
 ddl_Dept.DataValueField="Dept_Id";
 ddl_Dept.DataBind();

 OleDbDataAdapter _Adapter3=new
OleDbDataAdapter("SELECT Section_Name,Section_Id from
Tbl_Sections where Dept_Id="+ddl_Dept.SelectedValue+" order by
Section_Name",_Connection);
 _Adapter3.Fill(Dataset,"Section");

 ddl_Section.DataSource=Dataset.Tables["Section"];
 ddl_Section.DataTextField="Section_Name";
 ddl_Section.DataValueField="Section_Id";
 ddl_Section.DataBind();
 }

private void ddl_Dept_SelectedIndexChanged(object sender,
System.EventArgs e)
 {
 OleDbDataAdapter _Adapter3=new
OleDbDataAdapter("SELECT Section_Name,Section_Id from
Tbl_Sections where Dept_Id="+ddl_Dept.SelectedValue+" order by
Section_Name",_Connection);
 _Adapter3.Fill(Dataset,"Section");

 ddl_Section.DataSource=Dataset.Tables["Section"];
 ddl_Section.DataTextField="Section_Name";
 ddl_Section.DataValueField="Section_Id";
 ddl_Section.DataBind();
 }

private void btn_Submit_Click(object sender, System.EventArgs e)
 {
 try

www.manaraa.com

169

 _Connection=new
OleDbConnection(data_Layer.Set_Str_Conn);

 if(btn_Submit.Text=="Save")
 {
 _Connection.Open();
 _Command=new
OleDbCommand("SELECT Emp_No from Tbl_EmpDetails where
Catg_Id=5 and Sector_Id="+ddl_Sector.SelectedValue+" and
Dept_Id="+ddl_Dept.SelectedValue+" and
Section_Id="+ddl_Section.SelectedValue+"",_Connection);

 _DataReader=_Command.ExecuteReader();
 _DataReader.Read();

string str_emp=_DataReader[0].ToString();
 _DataReader.Close();

 _Command=new
OleDbCommand("SELECT Emp_No from Tbl_EmpDetails where
Emp_Name='"+ddl_Emp.SelectedValue+"' and Sector_Id=0 and
Dept_Id=0 and Section_Id=0",_Connection);

 _DataReader=_Command.ExecuteReader();
 _DataReader.Read();

string str_empno=_DataReader[0].ToString();
 _DataReader.Close();

 _Command=new
OleDbCommand("UPDATE Tbl_EmpDetails set
Sector_Id="+ddl_Sector.SelectedValue+",Dept_Id="+ddl_Dept.Selec
tedValue+",Section_Id="+ddl_Section.SelectedValue+",Mgr_Id='"+str
_emp+"' where Emp_No='"+str_empno+"'",_Connection);
 _Command.ExecuteNonQuery();
 _Connection.Close();
 Fill_Grid();
 Fill_Employee();
 lbl_Save.Text="Record inserted

www.manaraa.com

170

 successfully";
 }

else if(btn_Submit.Text=="Update")
 {
 _Connection.Open();
 _Command=new
OleDbCommand("SELECT Emp_No from Tbl_EmpDetails where
Emp_Name='"+ddl_Emp.SelectedValue+"'",_Connection);

 _DataReader=_Command.ExecuteReader();
 _DataReader.Read();

string str_empno=_DataReader[0].ToString();
 _DataReader.Close();

 _Command=new
OleDbCommand("UPDATE Tbl_EmpDetails set
Sector_Id="+ddl_Sector.SelectedValue+",Dept_Id="+ddl_Dept.Selec
tedValue+",Section_Id="+ddl_Section.SelectedValue+" where
Emp_No='"+str_empno+"'",_Connection);
 _Command.ExecuteNonQuery();
 _Connection.Close();

 Fill_Grid();
 Fill_Employee();
 Fill_Sectors();
 Fill_Departments();
 Fill_Sections();
 lbl_Save.Text="Record updated
successfully";
 btn_Submit.Text="Save";

 }
 }

catch(Exception ex)
 {
 lbl_Save.Text=ex.Message;

www.manaraa.com

171

private void dg_Details_DeleteCommand(object source,
System.Web.UI.WebControls.DataGridCommandEventArgs e)
 {
 try
 {
 string EmpName;
 lbl_Save.Text="";
 EmpName=e.Item.Cells[6].Text;
 string ename=e.Item.Cells[2].Text;
 string strDelete="UPDATE Tbl_EmpDetails
set Sector_Id=0,Dept_Id=0,Section_Id=0 where
Emp_No='"+EmpName+"'";
 _Command=new
OleDbCommand(strDelete,_Connection);
 _Connection.Open();
 _Command.ExecuteNonQuery();
 _Connection.Close();

 dg_Details.EditItemIndex=-1;
 Fill_Grid();
 Fill_Employee();
 lbl_Save.Text="Record deleted Successfully";

 }
 catch(Exception ex)
 {
 lbl_Save.Text=ex.Message;
 }
 }

private void dg_Details_EditCommand(object source,
System.Web.UI.WebControls.DataGridCommandEventArgs e)
 {
// try
// {

 lbl_Save.Text="";
 string str_CmbValue="";
 Fill_Employee();

www.manaraa.com

172

 Fill_Sectors();
 ddl_Emp.Items.Insert(0,e.Item.Cells[2].Text);
 foreach (ListItem obl_Item in ddl_Sector.Items)
 {
 if (obl_Item.Text.Trim ().ToUpper () ==
e.Item.Cells[3].Text.Trim ().ToUpper ())
 {
 str_CmbValue =obl_Item.Value ;
 ddl_Sector.Items.Remove (obl_Item);
 break;
 }
 }
 ddl_Sector.Items.Insert(0,e.Item.Cells[3].Text);
 ddl_Sector.Items[0].Text = e.Item.Cells[3].Text;
 ddl_Sector.Items[0].Value =str_CmbValue;
 Fill_Departments();

foreach (ListItem obj_Item in ddl_Dept.Items)
 {

if (obj_Item.Text.Trim ().ToUpper () == e.Item.Cells[4].Text.Trim
().ToUpper ())
 {
 str_CmbValue =obj_Item.Value ;
 ddl_Dept.Items.Remove (obj_Item);
 break;
 }
 }
 ddl_Dept.Items.Insert(0,e.Item.Cells[4].Text);
 ddl_Dept.Items[0].Text = e.Item.Cells[4].Text;
 ddl_Dept.Items[0].Value =str_CmbValue;
 Fill_Sections();

foreach (ListItem obk_Item in ddl_Section.Items)
 {

if (obk_Item.Text.Trim ().ToUpper () == e.Item.Cells[5].Text.Trim
().ToUpper ())

www.manaraa.com

173

 str_CmbValue =obk_Item.Value ;
 ddl_Section.Items.Remove (obk_Item);
 break;
 }
 }
 ddl_Section.Items.Insert(0,e.Item.Cells[5].Text);
 ddl_Section.Items[0].Text = e.Item.Cells[5].Text;
 ddl_Section.Items[0].Value =str_CmbValue;

if(btn_Submit.Text=="Save")
 {
 btn_Submit.Text="Update";
 }
 }

 private void dg_Details_PageIndexChanged(object
source,
System.Web.UI.WebControls.DataGridPageChangedEventArgs e)
 {
 try
 {

 dg_Details.CurrentPageIndex=e.NewPageIndex;
 Fill_Grid();
 }
 catch(Exception ex)
 {
 lbl_Save.Text=ex.Message;
 }
 }

private void btn_Cancel_Click(object sender, System.EventArgs e)
 {
 lbl_Save.Text="";
 ddl_Emp.Enabled=true;
 btn_Submit.Text="Save";
 Fill_Employee();
 }

www.manaraa.com

174

private void dg_Details_SelectedIndexChanged(object sender,
System.EventArgs e)
 {

 }
 }

A.4: Login

public class frm_Login : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label Label1;
 protected System.Web.UI.WebControls.Label Label2;
 protected
System.Web.UI.WebControls.RequiredFieldValidator rfv_UserName;
 protected
System.Web.UI.WebControls.RequiredFieldValidator rfv_Password;
 protected System.Web.UI.WebControls.TextBox
txt_UserName;
 protected System.Web.UI.WebControls.Button
btn_SignIn;
 protected System.Web.UI.WebControls.TextBox
txt_Pswd;
 protected System.Web.UI.WebControls.Label lbl_Signin;
 protected System.Web.UI.WebControls.Label lblType;

 Data data_Layer= new Data();
 protected System.Web.UI.WebControls.HyperLink
HypHome;
 OleDbConnection _Connection;
 string _UserType="";

 private void Page_Load(object sender,
System.EventArgs e)

 {

 _UserType=Convert.ToString(Request.QueryString["LoginTyp
e"]);

www.manaraa.com

175

if (Page.IsPostBack == false)
 {

if(_UserType=="" || _UserType==null || _UserType==string.Empty)
 {
 Response.Redirect("default.aspx");
 }

 data_Layer.Set_Str_Conn =
"Provider=Microsoft.Jet.Oledb.4.0; Data Source=" + Server.MapPath
("Data")+ @"\Email.mdb";

if (_UserType.ToUpper() == "User".ToUpper())
 {
 lblType.Text="User Login";
 }

else if(_UserType.ToUpper() == "Admin".ToUpper())
 {
 lblType.Text="Admin Login";
 }
 }

 }

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET
Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
private void InitializeComponent()

www.manaraa.com

176

 this.btn_SignIn.Click += new
System.EventHandler(this.btn_SignIn_Click);
 this.Load += new
System.EventHandler(this.Page_Load);

 }
 #endregion

private void btn_SignIn_Click(object sender, System.EventArgs e)
 {

 _Connection=new
OleDbConnection(data_Layer.Set_Str_Conn);
 _Connection.Open();
 OleDbDataAdapter _Adapter;
 DataSet _Dataset=new DataSet();

 _Adapter =new OleDbDataAdapter("SELECT
User_Name,Pwd,User_Type from Tbl_EmpDetails where
User_Name='"+txt_UserName.Text+"' and Pwd='" +txt_Pswd.Text
+"'",_Connection);
 _Adapter.Fill(_Dataset);

if (_Dataset.Tables[0].Rows.Count>0)
 {
 Session["UserID"] = txt_UserName.Text;
 Data.str_MailAddress ="";
 Data.str_MailEmps ="";

 OleDbDataAdapter _EmpidAdapter;
 DataSet _EmpidDataset=new DataSet();

 _EmpidAdapter=new
OleDbDataAdapter("SELECT Emp_No from Tbl_EmpDetails where
User_Name='" + txt_UserName.Text + "'",_Connection);

www.manaraa.com

177

 _EmpidAdapter.Fill(_EmpidDataset);

if (_EmpidDataset.Tables[0].Rows.Count>0)
 {

 Session["LoginUser"]=_EmpidDataset.Tables[0].Rows[0].ItemA
rray[0].ToString();
 }

if (_UserType.ToUpper() == "User".ToUpper())
 {
 _Connection.Close ();
 Server.Transfer
("frm_CheckMails.aspx");
 }

else if (_UserType.ToUpper() == "Admin".ToUpper())
 {

if (_Dataset.Tables[0].Rows[0].ItemArray[2].ToString().ToUpper()
== "General".ToUpper())
 {
 lbl_Signin.Text="You dont have
Administrator Previliges";

 }

else if(
_Dataset.Tables[0].Rows[0].ItemArray[2].ToString().ToUpper() ==
"Admin".ToUpper())
 {

 Session["Admin"]=txt_UserName.Text;

www.manaraa.com

178

 _Connection.Close ();
 Server.Transfer
("frm_Registration.aspx");
 }
 }
 }

else
 {
 lbl_Signin.Text = "Invalid
Username/Password";

 }
 _Connection.Close ();
 }

private void lbtnHome_Click(object sender, System.EventArgs e)
 {
 Server.Transfer("default.aspx");
 }}

www.manaraa.com

179

Arabic Summary

www.manaraa.com

180

